
1

O
R

IG
IN

A
L 

PA
PE

R

in redox status has already been shown to be essential in 
the development of several medical conditions (includ-
ing diabetes, atherosclerosis, and cancer) [6]. Oxidative 
stress is one of the major contributors in the progression 
of MASLD toward metabolic dysfunction-associated 
steatohepatitis (MASH) [7]. This leads to elevated ex-
pression of proinflammatory cytokines and activation 
of stellate cells, ultimately culminating in liver fibrosis. 
Cellular mechanisms that alleviate excess of reactive 
oxygen species (ROS) involve several enzymes with 
potent antioxidative properties. These include catalase 
(Cat) and glutathione peroxidase (GPx), which deal 
with hydrogen peroxide, and superoxide dismutase 
(SOD), which degrades reactive superoxides [8]. 
Restoring the oxidoreductive balance can be achieved 
by the improvement of antioxidant enzyme expression 
and/or their activity. 

Previously it was found that glucagon-like peptide-1 
(GLP-1) analogues can improve antioxidant capac-
ity in human monocytes/macrophages, astrocytes, 
and insulin-secreting pancreatic islet beta cells [9–11]. 

Introduction

Metabolic dysfunction-associated steatotic liver disease 
(MASLD) is emerging as a significant healthcare con-
cern, estimated to affect 30% of the world population 
[1]. The course of the disease may lead to a myriad 
of systemic complications [2]. Liver cirrhosis result-
ing from advanced stages of MASLD accounts for up 
to 5% of liver transplantations in Europe and even 
as much as 15% in the United States [3, 4]. The initial 
step in the progression of MASLD is the increased 
fat accumulation within the liver. The main culprit in 
the pathogenesis appears to be an excess of free fatty 
acids (FFAs), which activate intracellular proinflamma-
tory mitogen-activated protein kinases (MAPKs). This 
activation exacerbates oxidative stress through the gen-
eration of superoxide radicals and reactive aldehyde 
products [e.g. malondialdehyde (MDA)] [5]. As a result, 
in some patients with liver steatosis, inflammation en-
sues. Unfortunately, there are no well-established mark-
ers that predict the course of the disease. The imbalance 
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Abstract 
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a healthcare issue of growing concern. Its development 
is multifactorial, and it is more commonly seen in obese patients. In those circumstances, intracellular lipid overload ensues, resulting 
in oxidative stress that might be responsible for progression toward steatohepatitis. Novel therapeutic approaches that are effective in 
weight management are expected to improve the course of MASLD. One of the potential mechanisms involved in such protective proper-
ties may relate to the reduction in oxidative stress.
Material and methods: The induction of steatosis and the assessment of oxidative stress level and expression of antioxidant enzymes 
(superoxide dismutase — SOD, glutathione peroxidase — GPx and catalase — Cat) in HepG2 hepatoma cell line subjected to glucagon 
and exenatide treatment. 
Results: Exenatide monotherapy successfully reduced lipid accumulation by 25%. Significant reductions in markers of oxidative stress 
(reactive oxygen species and malondialdehyde) were obtained in cells subjected to combined treatment with glucagon and exenatide 
(by 24 and 21%, respectively). Reduced burden of oxidative stress was associated with elevated expression of SOD and GPx but not Cat.
Conclusions: Combined activation of glucagon-like peptide-1 (GLP-1) and glucagon receptors reduces oxidative stress in HepG2 steatotic 
cell cultures. This observation may stem from increased antioxidative potential.
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blue and incubated for 3 min. Afterwards, a 10-µL sample was in-
jected into the sample plate and processed in the counter. Results 
were reported as a relative value to control sample. 

Quantification of steatosis 
An Oil Red O (ORO) technique was employed to assess the extent 
of lipid accumulation [Lipid (Oil Red O) Staining Kit, Cat. No. 194, 
Sigma-Aldrich St. Louis, USA]. After the experimental procedure, 
cells were immobilised on a culture plate by fixation with a 10% 
formalin solution for a duration of one hour. After rinsing with 
water and 60% isopropanol, an Oil Red O Working Solution was 
added, and cultures were incubated for 20 min, followed by 3 
washes with water. Then cells were stained with haematoxylin for 
one min and washed 3 times with water. At this step the cells were 
evaluated using a Delta Optical IB-100 microscope (Delta Optical, 
Nowe Osiny, Poland) at 400× magnification. Finally, the stain was 
extracted from the wells with 100% isopropanol, and its amount was 
assessed at 492 nm wavelength on a spectroscope xMark Microplate 
Absorbance Spectrophotometer (Bio-Rad Laboratories, Hercules, 
CA., USA). Experiments were performed in duplicate.

Assessment of oxidative stress (ROS, MDA)
The ROS level was estimated using a commercially available kit 
(Fluorometric Intracellular ROS Kit, Cat. No. MAK143, Sigma-Al-
drich, St. Louis, MO, USA). The assay detects predominantly su-
peroxide and hydroxyl radicals. Cells were cultured on a 96-well 
plate in 90 µL of culture media. At the end of the experiment, each 
well was supplemented with 100 µL of Master Reaction Mix for 1 h. 
Afterwards, oxidative stress was induced by the addition of 10 µL 
of hydrogen peroxide (0.3%) and incubated for 30 min. The fluo-
rescence intensity was measured on xMark Microplate Absorbance 
Spectrophotometer (BioRad Laboratories, Hercules, CA, USA) at 
520 nm. The result is expressed as observed optical density (OD). 
Assays were run in duplicate.
Lipid peroxidation was assessed using a thiobarbituric acid (TBA) 
method with a commercially available kit [Lipid Peroxidation 
(MDA) Assay Kit, Cat. No. MAK085, Sigma-Aldrich, St. Louis, MO, 
USA]. Cells derived from 24-well plates were lysed with 300 µL 
of lysis buffer, transferred to vials and centrifuged at 13,000 g for 
10 min. Then, 200 µL from each sample was transferred to a new 
vial, supplemented with 600 µL of TBA solution and incubated 
at 95ºC for 1 h. After cooling the samples to room temperature, 
200-µL aliquots were transferred to a 96-well plate for analysis. 
The fluorescence intensity was measured on an xMark Microplate 
Absorbance Spectrophotometer (Bio-Rad Laboratories, Hercules, 
CA., USA) at 532 nm. The result is expressed as the observed optical 
density. Assays were done in duplicate.

Reverse transcription-quantitative polymerase 
chain reaction (RT-QPCR)
The assessment of SOD1, GPx and Cat were performed using quan-
titative polymerase chain reaction (QPCR). Primer sequences for 
SOD, GPx, and Cat were obtained from the PrimerBank database 
[15] SOD1: forward GAAGGTGTGGGGAAGCATTA; reverse CCAC-
CGTGTTTTCTGGATAGA. GPx: forward-CGGGACTACACCCA-
GATGAA; reverse-TCTCTTCGTTCTTGGCGTTC. Cat: forward 
TCAGGCAGAAACTTTTCCATT; reverse TGGGTCGAAGGCTATCT-
GTT. Beta-actin (ACTB) gene was chosen as a reference gene for sub-
sequent calculations. Primer sequences for RT-QPCR were sourced 
from the same repository as previously mentioned (PrimerBank), 
and they were as follows: ACTB forward: TCATGAAGTGTGAC-
GTGGACATC, ACTB reverse: CAGGAGGAGCAATGATCTTGATCT. 
Total RNA was extracted from cultures of HepG2 cells by adding 
1 mL of TRI reagent (MRC Inc., Cincinnati, OH, USA) to lyse cells 
derived from one of 24-well culture plates (5 × 104 cells per well) 
(SPL Life Sciences Co., Ltd., Immuniq, Żory, Poland) according 
to manufacturer’s recommendations. The final amount of RNA was 
dissolved in 150 µL of nuclease-free water, and the concentration 

Nowadays, incretin-based therapies are becoming 
the major player in the treatment of diabetes and obesi-
ty. Liraglutide and semaglutide are widely used around 
the world for weight reduction. The observed decrease 
in lipid overload affects not only subcutaneous fat but 
also internal organs (e.g. liver). Previous studies have 
found that lipid accumulation in cultured HepG2 cells 
(human hepatoma cells) can be alleviated by exenatide 
[12]. Incretin-based therapies were shown to effectively 
improve markers of steatohepatitis in diabetic, obese 
subjects [13]. Results of clinical trials also suggest that 
GLP-1 analogues might be implemented in the treat-
ment of MASLD [1]. Furthermore, recent data indicate 
that an even greater impact on liver steatosis may 
be achieved by dual-receptor agonists. Cotadutide, 
which activates both the GLP-1 and glucagon recep-
tors, exhibited promising results in animal models of 
liver steatosis. In a recently completed clinical trial in 
overweight diabetic subjects, cotadutide therapy was 
associated with a significant impact on liver steatosis 
and improvements in lipid and glucose metabolism 
[14]. Those effects seemed to be more pronounced than 
those of an active comparator — liraglutide.

Therefore, we conceived an in vitro study to assess 
the influence of dual receptor activation, using GLP-1 
analogue (exenatide) and glucagon, on the free fatty 
acid-induced steatosis in human hepatoma cells. Our 
aim was to estimate the level of oxidative stress (ROS 
and MDA) induced by lipid overload and to evaluate 
the impact of exenatide and/or glucagon on the expres-
sion of antioxidant enzymes (SOD, GPx, Cat). 

Material and methods

HepG2 culture conditions
HepG2 cells were obtained from a commercially available source 
(HB-8065, ATCC) from ATCC (Manassas, VA, USA) and cultivated 
(Heracell, Thermo Fisher Scientific, Inc., Grand Island, NY, USA) 
according to the manufacturer ’s recommendations [Dulbecco’s 
Modified Eagle Medium (DMEM), Cat. No. 31966047, Gibco, Bur-
lington, MA, USA] supplemented with 10% foetal bovine serum 
(Cat. No. 10500064, Gibco, MA, USA) and 1% penicillin/strepto-
mycin (Cat. No. 15070063, Gibco, MA, USA) at 37ºC and 5% CO2. 
The culture medium employed to induce steatosis contained 400 
µM oleic acid (oleic acid BioReagent, Cat. No. 01383-10G Merck 
Sigma-Aldrich, Poznań, Poland) dissolved in 1% fatty acid free 
bovine serum albumin (BSA). Cells were seeded on 24-well plates 
(5 × 104) or 96-well plates (1 × 104) and cultured until reaching 
70% confluence. Afterwards, on the day of the experiments, 
culture medium was replaced with a fresh one, supplemented 
with respective reagents: glucagon (Human glucagon EDQM, 
Cat. No. Y0000191-2EA Merck Sigma-Aldrich, Poznań, Poland) 
— 30 nM solution, exenatide (Exendin-4, Cat. No. E7144, Merck 
Sigma-Aldrich, Poznań, Poland) — 200 nM solution, or glucagon (30 
nM) and exenatide (200 nM). The culture lasted for 24 h. All experi-
ments were performed up to the 20th cell passage. The viability of 
cells exposed to all experimental conditions was estimated using 
0.4% trypan blue method using a Bio-Rad TC-20 automated cell 
counter (Bio-Rad, Hercules, CA, USA). Briefly, 10 µL aliquots of 
trypsinised cell suspension was mixed with 10 µL of 0.4% trypan 
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and purity were measured spectrophotometrically at the wave-
length of 260/280 nm (BioPhotometer, Eppendorf GmbH, Hamburg, 
Germany). To remove potential contamination with DNA, samples 
containing 2 µg of total RNA were exposed to DNase-I for 15 min-
utes at 37°C (RNase-free, Promega GmbH, Walldorf, Germany). 
Afterwards, 1 µg of DNA-free RNA was reverse transcribed and sus-
pended in 20 µL of solution. In the final step of the procedure, it 
was further diluted by a factor of 5, as recommended by the manu-
facturer (GoScript Reverse Transcription System, Promega GmbH, 
Walldorf, Germany). RT-PCR reaction mixtures consisted of 10 µL of 
SYBR Select Master Mix (Thermo Fisher Scientific, Warsaw, Poland), 
0.2 µM of each primer (SOD1 F/R or GPx F/R or Cat F/R), and 2 µL 
of reverse transcription mixture (equivalent of 10 ng of total RNA). 
A Roche LightCycler 480 Instrument II (Roche Diagnostics, Warsaw, 
Poland) with a specific thermal profile (94°C/3 min then 45 cycles of 
94°C/30 s, 58°C/30 s, and 72°C/45 s) was used to estimate the level of 
gene expression. Specificity of products was confirmed using melt-
ing curve generation. Increasing fluorescence was measured in 
real-time to obtain the value of cycle threshold (CT), which was 
then normalised to that of ACTB expression and used for calculation 
of a relative gene expression, according to the 2(–ΔΔCt) formula [16].

Western blot
Human-specific antibodies were used as follows: superoxide dis-
mutase-1: Anti-SOD1 (Sigma, Cat. No. SAB1411305), glutathione 
peroxidase: Anti-GPX1 (Invitrogen, Cat. No. PA5-30593); catalase: 
Anti-Catalase (Thermo, Cat. No. PA5-29650); and b-actin (Sigma, 
Cat. No. SAB5600204). Cells were cultured on 24-well culture plates 
(5 × 104 cells per well) (SPL Life Sciences Co., Ltd.). Prior to cell lysis, 
plates were placed on ice, and cells were washed briefly with 500 
µL of ice-cold PBS (phosphate-buffered saline). Protein extraction 
was done using 200 µL of cold RIPA (Radio-Immunoprecipitation 
Assay) buffer supplemented with 1.5 µL of Halt Protease Inhibi-
tion Cocktail (1:100 v/v) per well (both chemicals from Thermo 
Fischer Scientific, Inc., Warsaw, Poland). The total amount of protein 
was measured in each sample by bicinchoninic acid assay (BCA as-
say, Merck Millipore, Poznań, Poland), and the total protein concen-
tration was calculated according to the standard curve based on BSA 
solutions of known protein concentration (Thermo Fisher Scientific, 
Inc., Warsaw, Poland). Proteins from cell lysates were separated 
by means of electrophoresis in polyacrylamide gel in the presence 
of ColorPlus Prestained Protein Marker (New England Biolabs, 
Lab-Jot, Warsaw, Poland), and 20 µg of total protein was loaded into 
gel slots. After separation, proteins were immediately electroblot-
ted onto a PVDF membrane (Merck Millipore, Poznań, Poland). 
Membranes were blocked by incubation in 3% BSA solution in 
Tris-buffered saline (1X TBS) for 2 hours, and then membranes 
were placed in 3% BSA/1X TTBS (TBS supplemented with 0.05 % 
of Tween-20) containing one type of antibody at a final dilution of 
1:1000. Incubations were performed for 1 h at ambient temperature 
with continuous rocking. Then, after 2 washes in TTBS for 10 min 
each, an Anti-rabbit IgG (whole molecule) peroxidase-conjugated, 
secondary antibody (No. Cat. A0545, Merck Millipore, Poznań, 
Poland) was added (antibody dilution: 1:10,000 in 3% BSA/TTBS). 
Incubation was performed for one hour under continuous rock-
ing. Finally, after 3 washes (2X TTBS for 5 min each and 1X TBS for 
5 min), a specific chemiluminescent signal was developed (Pierce 
ECL Western Blotting Substrate, Thermo Fisher Scientific, Inc., War-
saw, Poland). After development, membranes were digitised using 
the ChemiDoc-It Imaging System (Analytik Jena, Jena, Germany). 
Measurements of relative optical density (ROD) representing 
the amount of the protein of interest in a sample were done using 
ImageJ software [17].

Statistical analysis
The normality of distribution of data was evaluated using Shap-
iro-Wilk’s test. All data were normally distributed and analysed 
using one-way t-test or ANOVA with post-hoc Tukey test and re-

ported as means ± SEM. The p level below 0.05 was considered as 
statistically significant.

Results

Viability
The viability of HepG2 cells exposed to all experimental 
conditions remained unaffected (Fig. 1).

Induction of steatosis in cultured HepG2 cells
At the beginning of the study, we successfully induced 
cellular steatosis in HepG2 cells using oleic acid, which 
resulted in a major (64%) increase in intracellular lipid 
content (Fig. 2A). 

In the following step, steatotic HepG2 cells were 
exposed to either glucagon, exenatide, or a combination 
of both. As a result, a statistically significant reduction 
(by 25%) in the lipid content was observed in cells 
treated with exenatide. However, the changes in cellular 
steatosis levels observed in cells exposed to glucagon 
alone or in combination with exenatide did not reach 
statistical significance compared to controls (Fig. 3A).

Markers of oxidative stress (ROS and MDA)
In the initial experiments we observed that exposure to 
oleic acid led to a significant (19%) increase in the level 
of ROS (Fig. 2B). Therefore, we estimated the influence 
of glucagon and exenatide in cultures exposed to oleic 
acid. None of the monotherapies affected the ROS level. 
The level of ROS was significantly reduced (by 24%) 
only in cells treated with both glucagon and exenatide 
(Fig. 4A). Importantly, we noted that combined therapy 
reduced the ROS level to a greater extent than gluca-

Figure 1. Relative viability of HepG2 cells subjected to all 
experimental conditions: culture medium only (C_0); oleic acid 
(C); oleic acid and glucagon (G); oleic acid and exenatide (E); oleic 
acid, glucagon, and exenatide (E + G). Data are expressed as mean 
percentages ± standard error of the mean (SEM) in comparison 
to C_O (n = 3)
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gon or exenatide alone. The MDA level, which might 
be considered as a legacy of the ROS exposure, was 
effectively reduced by 21% in cells exposed to com-
bined treatment with glucagon and exenatide (Fig. 4B). 
Contrary to observations in experiments on ROS levels, 
there was no additive impact of combined treatment 
versus monotherapies.

Antioxidant enzyme expression

SOD
Compared to controls, SOD mRNA expression was 
considerably increased in HepG2 cells exposed to ex-
enatide monotherapy (nearly 4-fold) or both glucagon 
and exenatide treatment (5-fold). Glucagon alone was 
not able to change SOD mRNA expression (Fig. 5A). 
Interestingly, the impact on the expression of SOD 
protein seemed less pronounced. In contrast to con-
trols, the difference reached statistical significance only 
in cultures exposed to both glucagon and exenatide 
(by 1.9-fold). Additionally, the combined treatment 
effectively increased SOD protein levels by 52% in 

HepG2 cells compared to treatment with glucagon 
alone (Fig. 5B).

GPx
The expression of GPx mRNA was substantially elevat-
ed in cultures exposed to both glucagon and exenatide, 
showing a 6.6-fold increase. Conversely, the impact 
of exenatide alone on GPx mRNA levels was less pro-
nounced, with a 1.8-fold increase compared to controls 
(Fig. 5C). No measurable impact of glucagon alone on 
GPx mRNA expression was observed.

In experiments assessing GPx protein expression, 
a significant increase in GPx levels was observed only 
in HepG2 cell cultures exposed to both glucagon and ex-
enatide, resulting in a 2-fold rise. However, neither of 
the monotherapies influenced GPx protein expression.

Cat
Interestingly, the experiments on expression of Cat 
showed that the mRNA level in cells subjected to glu-
cagon and exenatide was modestly reduced by 32%. 
However, this finding was not translated into results 

Figure 2. Intracellular lipid accumulation in HepG2 cells. Figure shows representative microphotographs depicting lipid droplets stained 
by Oil Red O in control cultures (C_0) and cells exposed to oleic acid (C). Data are expressed as mean signal intensity ± standard error 
of the mean (SEM). The level of statistical significance is marked by an asterisk: *p < 0.05 (n = 6)

Oil Red O Staining Reactive oxygen species
A B

C D
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of experiments involving the assessment of protein 
expression, which remained unaffected in all culture 
conditions.

Discussion

Our study showed that in vitro exposure of HepG2 cells 
to oleic acid resulted in intracellular lipid accumulation. 
To some extent, those changes resemble histological 
findings in the liver of patients with MASLD. The ste-

atosis was associated with increased oxidative stress. 
The lipid burden was effectively reduced by exenatide 
treatment. However, to affect oxidative stress markers 
(ROS and MDA) both glucagon and exenatide had to 
be added to culture media. The reduction in oxidative 
stress was associated with an increased SOD and GPx, 
but not with Cat expression. 

The progression of MASLD from simple steatosis 
to liver cirrhosis is a gradual process [1]. Up to 40% 
of patients with steatosis may progress into steato-

Figure 3. The impact of glucagon (G), exenatide (E), and combined treatment (G + E) on the intracellular lipid accumulation in HepG2 
cells exposed to oleic acid.  Figure accompanied by representative microphotographs depicting lipid droplets stained by Oil Red O in 
selected culture conditions. Data are expressed as mean signal intensity ± standard error of the mean (SEM). The level of statistical 
significance is marked by an asterisk: *p < 0.05 (n = 6)

B C D E

A
Oil Red O Staining

Figure 4. The influence of glucagon (G), exenatide (E), and combined treatment (E + G) on the level of reactive oxygen species (ROS) 
(A) and malondialdehyde (MDA) (B). Data are expressed as mean signal intensity ± standard error of the mean (SEM). The level of 
statistical significance is marked by an asterisk: *p < 0.05, **p < 0.01, ***p < 0.001 (n = 6)

Reactive oxygen species Malondialdehyde
A B



6

O
R

IG
IN

A
L 

PA
PE

R

Incretins and oxidative stress in HepG2 Aleksandra Bołdys et al.

hepatitis. One of the potential links between those 2 
conditions is oxidative stress leading to lipotoxicity 
arising from concurrent lipid accumulation. Previous 
in vitro studies showed excessive ROS generation ac-
companied by high triglyceride content in HepG2 cell 
cultures exposed to oleic and palmitic acids [18]. One 
of the sources for excessive oxidative stress is attributed 
to elevated expression of NADPH oxidase, which is 
a major source of intracellular ROS [19]. Lipid-laden he-
patocytes were also shown to be affected by reduced 

antioxidant enzyme activities [20]. Other cells such as 
Kupfer cells also actively participate in oxidative status 
inside the liver [21]. Therefore, the cause of increased 
oxidative stress in the liver seems to be complex. In our 
experiments the increased level of ROS was associated 
with secondary lipid oxidation, which is expressed by 
MDA level — a well-established marker of lipid per-
oxidation [22]. In observational studies, elevated MDA 
level was associated with increased risk of progression 
of non-alcoholic fatty liver disease (NAFLD) toward 

Figure 5. The influence of glucagon (G), exenatide (E), and combined treatment (E + G) on the level of superoxide dismutase (SOD), 
glutathione peroxidase (GPx), and catalase (Cat) expression at the mRNA (A, C, E) and protein (B, D, F) level; G. Representative 
western blot bands. Data are expressed as mean relative values ± standard error of the mean (SEM). The level of statistical significance 
is marked by an asterisk: *p < 0.05, **p < 0.01, ***p < 0.001 (n = 5 for SOD and n = 4 for Cat and GPx)

Superoxide dismutase (mRNA)

Glutathione peroxidase (mRNA)

Catalase (mRNA)

Superoxide dismutase (protein)

Glutathione peroxidase (protein)

Catalase  (protein)

A B

C D

F

G

E
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non-alcoholic steatohepatitis (NASH) and fibrosis [23]. 
Vitamin E (alpha-tocopherol), belonging to a group 
of potent antioxidants, is currently recommended in 
the treatment of MASH in patients without type 2 dia-
betes mellitus [24]. Therefore, it seems that moderation 
of lipid accumulation in hepatocytes and subsequent 
reduction in oxidative stress might be promising thera-
peutic options in MASLD. It is worth mentioning that 
vitamin E might exert some of its beneficial features in 
the course of MASLD by increasing the level of GLP-1 
[25]. Benefits in the course of the experimental model 
of NAFLD in mice treated with other antidiabetic drugs 
like dapagliflozin (a sodium/glucose cotransporter 2 
inhibitor) might also be attributed to incretin effects 
resulting from the inhibition of dipeptidyl peptidase-4 
leading to subsequent GLP-1 availability [26].

Recently, a growing body of evidence suggests 
that improvements in the course of MASLD might be 
achieved by GLP-1 analogues [27]. These drugs were 
primarily indicated in the therapy of type 2 diabetes, 
but current indications include the treatment of obe-
sity. During the therapy with GLP-1 analogue (dula-
glutide), a 26.4% (p = 0.004) reduction in intrahepatic 
lipid content assessed by magnetic resonance [magnetic 

resonance imaging-derived proton density fat fraction 
(MRI-PDFF)] was noted. GLP-1 effects on steatosis were 
accompanied by a reduction in markers of oxidative 
stress (MDA) in an animal model [28]. However, it is not 
certain whether the beneficial impact on the liver relies 
on weight reduction or is related to the influence on 
oxidative stress. Previous studies on GLP-1 analogues 
showed its potent antioxidant and anti-inflammatory 
properties in monocytes/macrophages and pancreatic 
islet beta cells [29]. Among the explored in vitro mecha-
nisms, the impact of protective effects of GLP-1 
analogues on hepatocytes include activation of Nrf2 
(nuclear factor E2-related factor 2) [30] and inhibition 
of NLRP3 (NOD-, LRP-, and pyrin domain-containing 
protein 3) inflammasome [31]. The former is associated 
with the expression of antioxidant enzymes. Real-world 
data showed that GLP-1 analogue can reduce the in-
cidence of cirrhosis and hepatocellular carcinoma by 
15% [0.85 (95% confidence interval (CI): 0.75–0.97)] 
[32]. In addition, novel dual-receptor agonists for GLP-1 
and glucagon, such as cotadutide, have been shown to 
significantly improve hepatic inflammation [33] and liv-
er function tests, with only a moderate impact on weight 
[34]. There is a scarcity of data exploring the impact of 

Figure 6. Potential reactive oxygen species (ROS) scavenging pathways introduced during exposure of steatotic HepG2 cells to glucagon 
and exenatide. Control cells (A) subjected to free fatty acids (FFA) showed increased burden of oxidative stress (B), which was alleviated 
by addition of glucagon and exenatide to culture medium (C). O2 — oxygen; SOD — superoxide dismutase; H2O2 — hydrogen peroxide; 
Cat — catalase; GPx — glutathione peroxidase; H2O — water; GSSG — oxidised glutathione

A

B

C
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GLP-1 and glucagon receptor agonists on the expression 
of antioxidant enzymes. In our experimental setting we 
found that elevated levels of SOD and GPx levels were 
achieved only in cells subjected to combined therapy 
with GLP-1 analogue and glucagon, whereas there was 
no change in catalase expression (Fig. 6). 

This might be a result of the above-mentioned 
impact on the Nrf2 pathway [35] and the lipolytic 
properties of those drugs [36]. Therefore, based on our 
experiments, we believe that concurrent stimulation of 
GLP-1 and glucagon receptors enhances beneficial ef-
fects on cellular steatosis and oxidative stress in HepG2 
to a greater extent than either monotherapy alone. 
These results show one of the mechanisms that might 
be responsible for in vivo improvements of liver steatosis 
and liver function tests.

The limitations of the study must be kept in mind. 
The in vitro nature of experiments, including only 
HepG2 cells, cannot reflect the complexity of cellular 
interactions inside the liver (e.g. stellate cells, Kupffer 
cells). Additionally, the choice of human neoplastic 
cellular line (HepG2) poses some risks in the extrapo-
lation of data to an in vivo setting. However, several 
immortalised hepatic cell lines were used as an in vi-
tro model for liver steatosis (HepG2, HepaRG, HuH7). 
The advantage of the HepG2 model is its relative sim-
plicity of culture and proneness to lipid accumulation 
accompanied by significant expression of inflammatory 
cytokines and enzymes involved in redox status [37]. 
The shortcomings of HepG2 cells are their low activity 
and low inducibility of CYP450 cytochromes that are 
involved in the drug metabolism (but both exenatide 
and glucagon are not subject to CYP450 metabolism). 
In such studies it is recommend that HepaRG or pri-
mary human hepatocytes (PHHs) be used [38]. PHHs 
are considered a gold-standard in liver steatosis studies, 
but their usage has some limitations including invasive 
procedures required to obtain such cells (liver biopsy). 
One must also bear in mind that PHH cultures are 
composed of differentiated cells with limited life span, 
and due to different genetic or metabolic backgrounds 
the cultures tend to vary between specimens obtained 
from different individuals, which might render lower 
reproducibility between experiments [39]. Therefore, 
we believe that the setting used in our experiments 
depicts well the initial phase of MASLD — intracel-
lular lipid accumulation, which at some point leads to 
activation of other cells involved in the progression of 
MASLD into advanced stages.

Conclusions

In our experiments a successful accumulation of lipids 
in HepG2 cells was achieved. Increased intracellular 

content was associated with increased oxidative 
stress. Exenatide reduced the extent of intracellular 
lipid accumulation, while combined treatment with 
glucagon and exenatide was able to alleviate oxida-
tive stress. We speculate that this observation was 
a result of increased antioxidant enzyme expression 
(SOD and GPx).
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