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emission computed tomography (SPECT), radiophar-
maceuticals can help elucidate intricate molecular 
pathways, receptor kinetics, and metabolic flux within 
endocrine tissues. This sophisticated diagnostic arma-
mentarium is particularly useful for nuanced identifi-
cation and characterisation of endocrine pathologies.

Copper-64, for example, has PET imaging capabili-
ties that support accurate disease diagnosis and stag-
ing. Copper-67, when chelated to targeting molecules, 
delivers targeted radiotherapy that minimises collateral 
damage to surrounding tissues. Actinium-225, an al-
pha-particle-emitter, exhibits a localised cytotoxic effect 
suitable for precision therapy in nuclear medicine. Such 
theranostic tools enable both high-resolution imaging 
and personalised, effective treatment strategies capable 
of advancing patient care.

Nuclear medicine has emerged as the gold stan-
dard in endocrinology, providing invaluable tools for 
the diagnosis, localisation, and treatment of endocrine 
disorders. This scientific discussion explores the key 
applications of nuclear medicine techniques in endo-

Introduction

Endocrine disorders pose numerous challenges to 
treatment, arising from the complexity of the endocrine 
system, an insufficiency of diagnostic tests, and the need 
for individualised treatment. The advent of targeted 
radionuclide therapy has opened new avenues for 
overcoming these challenges. Theranostics is a revolu-
tionary paradigm in nuclear medicine that leverages 
the unique properties of radionuclides to seamlessly 
integrate diagnostic imaging and therapeutic treatment. 
The level of precision afforded by this combination of 
nuclear medicine techniques has led to a significant shift 
toward more personalised therapies for a wide range 
of endocrine disorders. 

Radiopharmaceutical diagnostics utilise radioac-
tively labelled compounds or radiotracers. These can 
be used to noninvasively probe the function of internal 
organs, including those of the endocrine system. In 
conjunction with advanced imaging modalities, such as 
positron emission tomography (PET) and single-photon 
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Abstract 
Endocrinology is the study of hormones and the endocrine glands that are responsible for maintaining homeostasis in the human body. 
Recently, there has been a surge of interest in the development of novel radiopharmaceuticals for diagnostic and therapeutic purposes in 
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The article discusses innovative approaches that leverage the decay characteristics of radioisotopes to enhance the accuracy of diagnostic 
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ticals in endocrinology, this article aims to contribute to the collective knowledge base and foster a deeper understanding of the potential 
benefits and implications of these innovative technologies for both clinicians and researchers in the field of endocrine health.
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for some therapeutic applications. These include 
iodine-131 (131I) in radioiodine therapy for thyroid 
disorders and lutetium-177 (177Lu) in peptide receptor 
radionuclide therapy (PRRT) for NETs [4]. 

In PRRT, the connection between the radionuclide 
and somatostatin analogue occurs through a designated 
chelator. This complex, known as the radio–analogue 
complex, attaches to the somatostatin receptor on 
the cell membrane and undergoes internalisation. 
Consequently, radioactivity is conveyed into an intra-
cellular, receptor-recycling compartment of the cell, 
bringing the radionuclide even closer to the nucleus. 
Recent advancements in clinical practice have involved 
somatostatin receptor antagonists, which, unlike 
internalising agents, identify a larger number of bind-
ing sites. This leads to higher tumour-absorbed doses 
(Fig. 1) [5]. Beta radiation released by the radionuclide 
delivers localised cytotoxic effects to target tissues for 
precision in therapeutic outcomes while minimising 
damage to surrounding healthy tissues.

This discussion explores the evolving role of radio-
pharmaceuticals in diagnosing and treating endocrine 
disorders. The approach involves enhancing preci-
sion medicine by examining the molecular and decay 
characteristics of radiopharmaceuticals and exploiting 
them to tailor interventions based on detailed evalua-
tions. As scientific research uncovers new radiotracers 
and therapeutic options, the application of nucle-
ar medicine to endocrinology promises to improve di-
agnosis and treatment for a range of endocrine diseases, 
from thyroid dysfunction to NETs (Tab. 2). 

This potential is particularly significant for so-
matostatin receptor-targeted methods such as PRRT. 
The use of PRRT for the treatment of pancreatic neu-
roendocrine neoplasms should be considered as a sec-
ond-line treatment option for tumours with Ki-67 levels 
below 10%. PRRT may be a viable alternative to tyrosine 
kinase inhibitors or chemotherapy. In cases of secret-
ing malignant pancreatic neuroendocrine neoplasms, 
PRRT can be used as a first-line treatment to manage 
symptoms, although there is currently limited evidence 
supporting their effectiveness [4, 6].

Diagnostic radiopharmaceuticals

[68Ga]Ga-DOTATATE
The isotope gallium-68 allows high-resolution imaging 
via positron emission tomography/computed tomog-
raphy (PET/CT). [68Ga]Ga-DOTATATE has become 
a popular radiopharmaceutical in endocrinology [7] 
for diagnosing and managing neuroendocrine tumours 
(NETs) and other somatostatin receptor-expressing 
lesions. DOTATATE consists of the 8-amino-acid pep-
tide octreotate covalently bonded to the bifunctional 

crinology and highlights their significance in advancing 
patient care (Tab. 1) [1].

The somatostatin receptor (SSTR) is deeply con-
nected to the intricate molecular milieu of endocrine 
cells. Somatostatin receptors (SSTRs) have therefore 
become valuable targets for both radiopharmaceutical 
diagnostics and therapeutic interventions in endocri-
nology [2]. The orchestrated overexpression of SSTRs, 
notably subtype 2 (SSTR2) and subtype 5 (SSTR5), on 
the plasma membranes of cells inside neuroendocrine 
tumours (NETs) forms the basis of highly targeted im-
aging and treatment strategies [3]. Radiotracers have 
been engineered to engage these receptors with un-
precedented specificity. This has allowed for a level 
of precision in delineation and characterisation of 
neuroendocrine tumours that represents a paradigm 
shift in diagnostics [3].

The decay characteristics of the various isotopes 
used in radiopharmaceuticals significantly influences 
their diagnostic and therapeutic efficacy. For diag-
nostic purposes, positron-emitting isotopes, such as 
fluorine-18 (18F) and gallium-68 (68Ga) are used in PET 
imaging, and the gamma-ray-emitting technetium-99m 
(99mTc) is commonly employed for SPECT imaging. Both 
allow highly sensitive imaging of metabolic and physi-
ological processes. Beta-emitting isotopes are favoured 

Table 1. Nuclear medicine gold standards for endocrine 
diagnostics

Application Gold standard

Thyroid 
gland

Radioactive iodine-131 (131I) is widely used for 
imaging and treating thyroid disorders, such 
as hyperthyroidism and thyroid cancer
131I is selectively taken up by thyroid cells, allowing 
for precise imaging of the thyroid gland and targeted 
therapy by destroying abnormal thyroid tissue

Parathyroid 
gland

Technetium-99m sestamibi ([99mTc]Tc-MIBI) is 
a radiotracer commonly employed for parathyroid 
imaging

This technique aids in the localisation 
of hyperfunctioning parathyroid glands in cases 
of hyperparathyroidism, guiding surgeons to 
perform minimally invasive procedures

Adrenal 
gland

Iodine-131 metaiodobenzylguanidine ([131I]I-MIBG) 
is used for imaging of adrenal medulla, to aid in 
the diagnosis and localisation of neuroendocrine 
tumours such as pheochromocytomas

Pituitary 
gland

Radiolabelled analogues of somatostatin, such as 
indium-111 pentetreotide (Octreoscan), are employed 
for imaging pituitary tumours, particularly those 
secreting growth hormone or prolactin

Endocrine 
oncology

18F-Fluorodeoxyglucose ([18F]FDG) PET is utilised 
to evaluate and stage endocrine malignancies to 
provide information on tumour metabolism and aid in 
treatment planning
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Figure 1. Mechanism of peptide receptor radionuclide therapy (PRRT). SSA — somatostatin analogue; SSTR — somatostatin receptor
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Table 2. Summary of applications of novel radiopharmaceuticals in endocrinology

Compound Clinical application Isotope () Role

[68Ga]Ga-DOTATATE GEP-NETs, bronchial and thymic NETs, differentiating between NETs and other 
lesions

68Ga (68 min) D[68Ga]Ga-PSMA Thyroid carcinoma, pancreatic NETs

[68Ga]Ga-DOTANOC NETs, planning of PRRT

[68Ga]Ga-DOTATOC NETs, metastatic lesions, whole-body scan

[18F]F-FDOPA NETs, primary and metastatic neuroendocrine lesions of pancreas, 
hyperinsulinism (abnormal pancreatic tissue responsible for the hyperinsulinism)

18F (109.8 min) D

[68Ga]Ga -Exendin-4 Insulinomas, assessing b-cell function in type 1 and type 2 diabetes, monitoring 
changes in b-cell mass over time

68Ga (68 min) D

[99mTc]Tc-MIBI
Hyperthyroidism and thyroid nodules, parathyroid adenomas, 

pheochromocytomas and adrenal cortical tumours, adrenal abnormalities, 
pituitary adenomas and incidentalomas

99mTc (6 h) D

18F]F-Fluorocholine NETs, parathyroid (hyperfunctioning parathyroid tissue in cases of 
primary hyperparathyroidism)

18F (109.8 min) D

[68Ga]Ga-Bombesin Pancreatic NETs
68Ga (68 min)

D

[68Ga]Ga-FAPI Pancreatic tumours, head and neck tumours, pituitary adenomas

[177Lu]Lu-DOTATOC NETs, pheochromocytomas and paragangliomas, endocrine malignancies 177Lu (6.7 d) T

[131I]I-MIBG NETs, pheochromocytomas and paragangliomas 131I (8 d) T

[212Pb]Pb-DOTAMATE Somatostatin receptor–positive NETs 212Pb (10.6 h) T

[213Bi]Bi-DOTATOC Somatostatin receptor–positive NETs 213Bi (45.6 min) T

[64Cu]Cu-DOTATATE GEP-NETs, pheochromocytomas and paragangliomas, GISTs, MTC, lung 
and bronchial NETs 64Cu (12.7 h) Th

[64Cu]Cu-Cetuximab Pancreatic cancer, head and neck cancer, monitoring treatment response

[225Ac]Ac-DOTA-JR11 NETs 225Ac (10 d) Th

GEP-NET — gastroenteropancreatic neuroendocrine tumour; NET — neuroendocrine tumour; GIST — small intestinal gastrointestinal stromal tumour; MTC — medullary 
thyroid cancer; t1/2 — half-life of isotope; 68Ga — gallium-68; 18F — fluorine-18; 212Pb — lead-212; 213Bi — bismuth-213; 64Cu — copper 64; 225Ac — actinium-225; 
D — diagnostics; T — therapy; Th — theranostics
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chelator 1,4,7,10-tetraazacyclododecane-N, N’, N,” 
N’’-tetraacetic acid (DOTA). Octreotate is a somatosta-
tin analogue with a high affinity for SSTRs. SSTRs are 
overexpressed in many NETs, making them ideal targets 
for diagnostic purposes. The development of [68Ga]
Ga-DOTATATE has led to more accurate and earlier de-
tection of NETs, aiding the selection of appropriate treat-
ment strategies and positioning [68Ga]Ga-DOTATATE as 
the putative gold standard for NETs [8, 9].

[68Ga]Ga-DOTATATE is prepared through the com-
plexation of 68Ga with DOTATATE. The source of 68Ga is 
based on the choice of on-site production process, either 
cyclotron irradiation or radionuclide generator [10].

Expression of SSTRs
This section discusses the mechanism of action of [68Ga]
Ga-DOTATATE. The high affinity of radiopharmaceuti-
cals for SSTRs, particularly SSTR2, has been explained 
[11]. Insulinomas, the most prevalent pancreatic islet 
cell tumours, often lead to hypoglycaemia due to 
excessive insulin production. Approximately 90% of 
insulinomas are benign and solitary, with 99% located 
in the pancreas [12]. SSTR expression studies have 
indicated consistent expression of SSTR1 and SSTR2 in 
insulinomas. Radioligand competition studies revealed 
SSTR2 and SSTR5 binding sites in 72% of insulinomas, 
SSTR3 in 44%, SSTR1 in 44%, and SSTR4 in 28%.

Glucagonomas, the third-most-common islet cell tu-
mour, are malignant in 70% of cases. In glucagonomas, 
SSTR2 shows high expression, whereas SSTR5 expres-
sion is lower, consistent with the pattern observed in 
normal pancreatic a-cells. Due to the rare occurrence 
of glucagonomas, drawing a generalised conclusion 
regarding SSTR expression is challenging.

Gastrinomas, which constitute up to 20% of pancre-
atic endocrine tumours, induce gastric ulcer formation 
through increased gastric acid secretion. The prevalence of 
expression of SSTR2 (in up to 100% of tumours) and SSTR5 
(in 76–100% of tumours) in gastrinomas correlates with 
positive clinical responses to octreotide treatment.

Somatostatinomas, which are mostly malignant 
and pancreatic polypeptide (PP)-producing tumours, 
are exceedingly rare. Vasoactive intestinal polypep-
tide–producing tumours (VIPomas), found in endo-
crine islets, also occur with low incidence. Although 
limited data hinder generalisation, SSTR5 appears to be 
predominantly expressed in somatostatinomas, while 
SSTR2 is prevalent in VIPomas. This molecular insight 
supports diagnostic and therapeutic targeting using 
radioactive octreotide for rare tumour entities [13–15].

Clinical applications
Clinical applications of [68Ga]Ga-DOTATATE include 
tumour localisation, staging and grading, therapeutic 

planning, response monitoring, and patient selection 
for PRRT.

Table 3 summarises the key advantages and limi-
tations of [68Ga]Ga-DOTATATE in the field of nucle-
ar medicine. 

Table 4 highlights the impact of [68Ga]Ga-DOTA-con-
jugated peptides on the diagnosis and management of 
NETs [16].

[68Ga]Ga-PSMA
As this article provides an in-depth examination of 

the development of radiotracers, their radiopharmaceu-
tical characteristics, and emerging applications in endo-
crinology [17], it is worthwhile discussing the growing 
role of [68Ga]Ga-PSMA in PET in endocrinology. [68Ga]
Ga-PSMA binds prostate-specific membrane antigen 
(PSMA), it was originally designed for prostate cancer 
detection, and it is still primarily used for prostate 
cancer imaging. However, recent studies have demon-
strated a wider potential application in endocrinology. 
[68Ga]Ga-PSMA exhibits affinities for specific receptors 
expressed in both prostate and certain other endocrine 
tissues [18]. In addition, some endocrine tumours, 
such as pheochromocytomas and paragangliomas, 
express PSMA. [68Ga]Ga-PSMA can be used to visual-
ise and diagnose these tumours with high sensitivity 
and specificity. 

Recent studies have revealed that [68Ga]Ga-PSMA 
can detect parathyroid gland lesions, neuroendocrine 
tumours, and thyroid lesions [19]. Compared to con-
ventional endocrine imaging modalities, the ability of 
[68Ga]Ga-PSMA PET to simultaneously provide func-
tional and anatomical information makes it a potentially 
valuable tool in certain endocrine scenarios. Despite its 
promising applications, the use of [68Ga]Ga-PSMA in 
endocrinology is not without its challenges, including 
the variability of receptor expression and the need for 
rigorous standardisation. 

Clinical applications
Various malignant conditions other than prostate 
cancer may result in [68Ga]Ga-PSMA uptake. Several 
non-prostatic tumours express PSMA, either on their 
cell membranes or within the endothelial cells of 

Table 3. Advantages and limitations of [68Ga]Ga-DOTATATE

Advantages Limitations

High sensitivity and specificity

Improved patient management

Reduced radiation exposure 
compared to traditional 
scintigraphy methods

Short half-life of 68Ga

Requirement for on-site sterile 
radiopharmacy facilities 
and radionuclide generator or 
cyclotron

68Ga — gallium-68
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the capillary beds associated with tumour neovascula-
ture. Consequently, these tumours demonstrated PSMA 
uptake in imaging studies. Examples of non-pros-
tate malignancies displaying PSMA uptake include 
renal cell carcinoma, pulmonary adenocarcinoma, 
multiple myeloma, glioblastoma multiforme, hepato-
cellular carcinoma, urothelial carcinoma, lymphoma, 
squamous cell carcinomas, colorectal carcinoma, thyroid 
carcinoma, gastrointestinal stromal tumours, and pan-
creatic neuroendocrine tumours (PNETs) [20].

[68Ga]Ga-PSMA has evolved from a groundbreaking 
tool in prostate cancer imaging to become an unex-
pected protagonist in the field of endocrinology. With 
its ability to detect various endocrine lesions, [68Ga]
Ga-PSMA is a multifaceted diagnostic tool with poten-
tial to play a role in endocrine imaging and contribute to 
the paradigm shift toward more personalised targeted 
therapies.

[68Ga]Ga-DOTANOC
[68Ga]Ga-DOTANOC is a radiotracer with applications 
in NET imaging. It has high affinity for SSTR2, SSTR3, 
and SSTR5 and allows detection of primary and meta-
static lesions. Accurate staging is crucial for clinicians 
developing effective, personalised treatment strate-
gies for NETs. [68Ga]Ga-DOTANOC provides precise 
information about tumour localisation, a capability 
that is particularly valuable when conventional imag-
ing modalities do not supply a full understanding of 
the extent and distribution of NETs, such as with PNETs, 
gastrointestinal neuroendocrine tumours (GI-NETs), 
and lung neuroendocrine tumours (LNETs) [21]. 
[68Ga]Ga-DOTANOC thus plays an important role in 
staging by identifying distant metastases and character-
izing the disease burden. [68Ga]Ga-DOTANOC can also 
be used to determine the grade of NETs based on the in-
tensity of somatostatin receptor expression, further sup-

porting a more personalised approach to patient man-
agement for tumours such as well-differentiated NETs 
(WD-NETs) and poorly differentiated neuroendocrine 
carcinomas (PD-NECs) [22]. By precisely delineating 
the extent of somatostatin receptor-positive lesions, 
[68Ga]Ga-DOTANOC supports NET treatment planning 
and therapeutic interventions, including surgery, PRRT, 
and targeted systemic therapies. 

[68Ga]Ga-DOTANOC is also useful in monitoring 
treatment responses, allowing for timely adjust-
ments to therapeutic regimens based on changes in 
somatostatin receptor expression. This is applicable 
to various types of NETs, including gastrointestinal 
carcinoids, bronchopulmonary carcinoids, and thymic 
NETs [23]. In certain clinical scenarios, such as insulino-
mas, gastrinomas, and glucagonomas, distinguishing 
between benign and malignant lesions or discerning 
different subtypes of NETs can be challenging. High-
lighting patterns of somatostatin receptor expression 
aids in differentiation of these lesions, which improves 
diagnostic accuracy and helps inform decisions to tailor 
the aggressiveness of therapeutic interventions. Soma-
tostatin receptor expression in NETs is associated with 
prognosis. [68Ga]Ga-DOTANOC, which noninvasively 
assesses somatostatin receptor density, contributes 
prognostic information helpful for risk stratification 
and determination of the overall management ap-
proach for patients with NETs of various subtypes 
and grades [24]. 

[68Ga]Ga-DOTANOC is useful for NET imaging 
across diverse tumour types and subtypes. With mul-
tiple applications in diagnosis, staging, treatment 
planning, lesion differentiation, and prognostic assess-
ment, the radiotracer contributes significant informa-
tion helpful for guiding clinical decisions supporting 
personalised and targeted therapeutic strategies for 
NET patients.

Table 4. Tumours that may be visualised with [68Ga]Ga-DOTA-conjugated peptides using positron emission tomography 
(PET) imaging

High expression of receptors Low expression of receptors

Gastroenteropancreatic tumours (e.g. carcinoids, gastrinoma, 
insulinoma, glucagonoma, VIPoma, etc.), functioning 
and nonfunctioning.

Sympathoadrenal system tumours (phaeochromocytoma, 
paraganglioma, neuroblastoma, ganglioneuroma)

Medullary thyroid carcinoma

Pituitary adenoma

Medulloblastoma

Merkel cell carcinoma

Small-cell lung cancer (mainly primary tumours)

Meningioma

Breast cancer

Melanoma

Lymphomas

Prostate carcinoma

Non-small-cell lung cancer

Sarcomas

Renal cell carcinoma

Differentiated thyroid carcinoma

Astrocytoma

Ependymoma
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[68Ga]Ga-DOTATOC
[68Ga]Ga-DOTATOC is a radiolabelled somatostatin 
analogue that specifically binds to SSTR2 and is there-
fore a useful imaging agent for detecting and localis-
ing NETs, which commonly overexpress somatostatin 
receptors. [68Ga]Ga-DOTATOC has superior sensitivity 
and specificity in detecting and staging neuroendocrine 
tumours, compared to conventional imaging modali-
ties. It allows for precise localisation and categorisation 
of both primary tumours and metastatic lesions express-
ing high concentrations of somatostatin receptors. In 
addition to its diagnostic role, [68Ga]Ga-DOTATOC PET 
provides clinicians with information on disease extent 
and treatment response to support planning and moni-
toring of personalised therapeutic approaches, such 
as PRRT, with high precision [25]. [68Ga]Ga-DOTATOC 
allows for comprehensive whole-body imaging for 
the detection of both primary and metastatic lesions in 
a single examination. This feature is particularly use-
ful in the management of NETs, which often present 
as multifocal and metastatic diseases [26]. 

[68Ga]Ga-DOTATOC’s high sensitivity, specificity, 
and whole-body imaging capabilities make it an invalu-
able tool in NET management for diagnosis, staging, 
treatment planning, and monitoring. As this technol-
ogy continues to advance, and with ongoing research, 
[68Ga]Ga-DOTATOC is likely to play an increasingly 
prominent role in personalised management of NETs.

[18F]FDOPA
Fluorine-18 3,4-dihydroxyphenylalanine ([18F]FDOPA) 
has gained significant attention in the field of endocri-
nology as a PET radiotracer, particularly in the imaging 
of NETs [27]. [18F]FDOPA is an analogue of the amino 
acid L-DOPA with high specificity for neuroendocrine 
tissues. The radiotracer exhibits excellent chemical sta-
bility and a short half-life (110 min), making it suitable 
for clinical use [28].

Mechanism of uptake
The mechanism of [18F]FDOPA uptake in neuroendo-
crine tissue is closely related to the L-DOPA metabolic 
pathway. Neuroendocrine cells, particularly those in 
NETs, express aromatic L-amino acid decarboxylase, 
leading to the accumulation of [18F]FDOPA in these 
cells. This uptake mechanism enhances the sensitivity 
and specificity of [18F]FDOPA PET imaging for the de-
tection of neuroendocrine lesions [29].

Clinical applications
[18F]FDOPA has demonstrated high sensitivity and ac-
curacy for the detection of primary and metastatic neu-
roendocrine lesions. Its ability to detect lesions in 
various organs, including the pancreas, gastrointestinal 

tract, and lungs, can contribute to improved diagnosis 
and staging [29]. [18F]FDOPA PET/CT with carbidopa 
premedication resulted in positive detection for 8 of 
11 patients (73%) with histologically proven solitary 
insulinoma. In control patients who underwent PET/CT 
without carbidopa premedication, none of the con-
firmed lesions (4 insulinomas, one nesidioblastosis) 
were detected [30] As previously mentioned, precise 
localisation of NETs is crucial for treatment planning. 
[18F]FDOPA aids in identifying and localising lesions 
that may be missed by other imaging modalities, there-
by assisting in guiding therapeutic decisions such as 
surgery, radiotherapy, or targeted radionuclide therapy. 
Changes in [18F]FDOPA uptake can provide valuable 
information about the treatment response, allowing 
for early adjustments to improve the effectiveness of 
personalised therapeutic strategies [28].

Comparisons between [18F]FDOPA and other 
imaging modalities, such as octreotide scintigraphy 
and CT/MRI, revealed that [18F]FDOPA possesses bet-
ter sensitivity and specificity in detecting small lesions 
and those with low somatostatin receptor expression. 
Research is ongoing to further optimise [18F]FDOPA 
imaging protocols and explore their applications in 
other endocrine disorders. Efforts are also underway 
to develop novel radiotracers that can complement or 
enhance [18F]FDOPA’s diagnostic capabilities in endo-
crinology [31].

[68Ga]Ga-Exendin-4
[68Ga]Ga-Exendin-4 is a radiopharmaceutical used for 
imaging pancreatic b-cell function and localisation 
of insulinomas. It binds to glucagon-like peptide-1 
(GLP-1) receptor, and therefore can provide insight 
into the function and distribution of insulin-secreting 
cells. Since its applications focus on visualisation of 
pancreatic b-cells, it has potential implications for 
noninvasive detection and management of endocrine 
disorders [32, 33]. The synthesis of [68Ga]Ga-Exendin-4 
involves conjugation of exendin-4 with a chelator that 
can stably complex with gallium-68. Radiolabelling is 
achieved through the coordination of gallium-68 with 
the chelator [34]. Common chelators include NOTA 
(1,4,7-triazacyclononane-N, N’, N’’-triacetic acid) 
and DOTA (1,4,7,10-tetraazacyclododecane-N, N’, N,” 
N’’-tetraacetic acid). 

Clinical applications
[68Ga]Ga-Exendin-4 imaging has demonstrated high 
sensitivity and specificity in visualising pancreatic 
b-cells. This is particularly relevant in the context of 
diabetes mellitus, where the ability to noninvasively as-
sess b-cell mass makes early diagnosis and personalised 
treatment strategies possible [32]. Several clinical stud-
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ies have investigated the utility of [68Ga]Ga-Exendin-4 
under different endocrine conditions. Notable trials in-
clude those evaluating its role in detecting insulinomas, 
assessing b-cell function in type 1 and type 2 diabetes, 
and monitoring changes in b-cell mass over time [33, 35].

[99mTc]Tc-MIBI
[99mTc]Tc-MIBI, a lipophilic cationic radiopharmaceu-
tical, is widely utilised in nuclear medicine and has 
proven invaluable for imaging various endocrine or-
gans. [99mTc]Tc-MIBI is taken up by cells in proportion to 
their mitochondrial membrane potential. In endocrine 
tissues, the accumulation of [99mTc]Tc-MIBI is influenced 
by metabolic activity and tissue perfusion. This mecha-
nism forms the basis for [99mTc]Tc-MIBI imaging to detect 
abnormalities in endocrine organs [36].

Clinical applications 
Thyroid disorders, including hyperthyroidism and thy-
roid nodules, can be effectively evaluated using [99mTc]
Tc-MIBI. The radiotracer accumulates in thyroid tissues, 
which allows visualisation of functional abnormalities 
and differentiation of benign and malignant lesions 
[37]. Primary hyperparathyroidism often necessitates 
localisation of abnormal parathyroid glands for surgi-
cal intervention. [99mTc]Tc-MIBI scintigraphy, in com-
bination with other imaging modalities, is capable of 
identifying parathyroid adenomas and hyperplasia [38, 
39]. Radiotracer uptake in adrenal tissues aids in the lo-
calisation and characterisation of adrenal abnormalities, 
and functional adrenal lesions such as pheochromo-
cytomas and adrenal cortical tumours can be imaged 
using [99mTc]Tc-MIBI [40]. Although less common, [99mTc]
Tc-MIBI has been employed for imaging pituitary ad-
enomas and incidentalomas. In conjunction with other 
imaging techniques, it contributes to the comprehen-
sive assessment of pituitary disorders [41, 42]. Overall, 
[99mTc]Tc-MIBI plays an important role in the imaging of 
endocrine organs and the diagnosis and management 
of a wide range of endocrine disorders. 

[18F]F-Fluorocholine
[18F]F-Fluorocholine ([18F]-FCH) is a radiopharmaceu-
tical with applications in imaging various tumours, 
including parathyroid adenomas. It also aids in the sur-
gical management of primary hyperparathyroidism 
by locating hyperfunctioning parathyroid glands [43]. 
To correctly interpret imaging results, it is important 
to understand the radiotracer’s mechanism of action. 
[18F]-FCH mimics choline metabolism and exhibits pref-
erential uptake in tissues with increased cell membrane 
turnover. Beheshti et al. [44] discuss the molecular 
processes and factors that influence [18F]-FCH uptake 
in endocrine tissues.

Clinical applications
The thyroid is a central player in overall endocrine 
function. However, assessment of thyroid nodules 
and malignancies can present a diagnostic challenge, 
which [18F]-FCH can assist by differentiating benign 
from malignant lesions [45, 46]. [18F]-FCH can also be 
used to image NETs and other endocrine pathologies 
[47]. Recent studies have investigated the feasibility 
of using [18F]-FCH for the localisation and characteri-
sation of parathyroid lesions [48, 49]. Comparisons 
with conventional imaging modalities, such as CT 
and magnetic resonance imaging (MRI), are essential 
for evaluating the added value of [18F]-FCH. Beheshti 
et al. [44] provide a comprehensive analysis of the di-
agnostic accuracy and clinical relevance of [18F]-FCH 
PET compared with other imaging techniques. [18F]-
Fluorocholine has emerged as a valuable and versatile 
tool in the field of endocrinology. Its application in 
prostate, thyroid, and neuroendocrine imaging has 
shown clinical significance. 

[68Ga]Ga-Bombesin
Bombesin is a 14-amino acid peptide with a high af-
finity for gastrin-releasing peptide receptor (GRPR). 
The current state of knowledge, technological ad-
vancements, and potential clinical implications of 
[68Ga]Ga-Bombesin in endocrinology have been 
previously reviewed [50]. GRPR is overexpressed in 
certain endocrine tumours, including prostate, breast, 
and gastrointestinal NETs, a finding that prompted 
the investigation of [68Ga]Ga-Bombesin for molecular 
imaging purposes [51]. 

Clinical applications
Translation of [68Ga]Ga-Bombesin from preclinical 
research to clinical practice is underway. Numerous 
preclinical studies have demonstrated the feasibil-
ity and specificity of [68Ga]Ga-Bombesin in detecting 
GRPR-positive tumours. Animal models have provided 
valuable insights into the pharmacokinetics, biodistri-
bution, and dosimetry of this imaging modality [52]. 
GRPR is a transmembrane G protein-coupled receptor 
found in the central nervous system, gastrointestinal 
tract, and pancreas. The receptor is involved in modu-
lating diverse physiological functions, including 
synaptic plasticity, hormone secretion, smooth muscle 
contraction, and cell proliferation [53, 54].

[68Ga]Ga-FAPI
Fibroblast activation protein inhibitors (FAPI) are a class 
of molecules that bind to fibroblast activation protein, 
a marker overexpressed in various tumours and tissues 
associated with endocrine pathology. When complexed 
with gallium-68, these radiotracers show promise 
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for high-resolution PET imaging of endocrine patho-
logical changes at the molecular level [55]. 

Clinical applications
[68Ga]Ga-FAPI holds potential for imaging a diverse 
spectrum of cancers, including pancreatic, head 
and neck, colon, lung, and breast cancers. Notably, FAPI 
imaging demonstrates tumour-to-background contrast 
ratios that are comparable to or surpass those achieved 
with [18F]Fluorodeoxyglucose (FDG)-PET imaging [56]. 
Its sensitivity and specificity can improve diagnostic 
accuracy for thyroid diseases [57, 58]. NETs, which are 
often challenging to localise, can also be effectively 
visualised using [68Ga]Ga-FAPI due to the increased 
uptake of FAPI in these tumours. [68Ga]Ga-FAPI has 
potential applications in pituitary imaging, for assess-
ment and characterisation of pituitary adenomas. As 
a noninvasive diagnostic tool, it may offer additional 
insights into tumour biology and guide therapeutic 
decisions [59, 60]. As research on this method continues 
to evolve, [68Ga]Ga-FAPI may become an integral com-
ponent of the endocrinologist’s diagnostic toolkit [61].

Therapeutic radiopharmaceuticals

[177Lu]Lu-DOTATOC
[177Lu]Lu-DOTATOC is a therapeutic radiopharma-
ceutical that has revolutionised the treatment of 
inoperable and metastatic NETs. It belongs to a class 
of radiolabelled somatostatin analogues and delivers 
targeted radiation to tumour cells expressing SSTRs 
[62]. The success of [177Lu]Lu-DOTATOC in prolong-
ing progression-free survival and improving patient 
quality of life has made it a valuable addition to the ar-
mamentarium of endocrine tumour treatments. [177Lu]
Lu-DOTATOC has high affinity for somatostatin recep-
tors, particularly for subtype 2, which is overexpressed 
in many NETs. The binding of [177Lu]Lu-DOTATOC to 
SSTR2 initiates internalisation of the receptor-ligand 
complex, leading to localised emission of beta radiation, 
induction of DNA damage, and ultimately, targeted 
tumour destruction [63].

Therapeutic applications
Clinical studies reveal a role for [177Lu]Lu-DOTATOC in 
the management of NETs, especially those overexpress-
ing SSTR2. PRRT with [177Lu]Lu-DOTATOC showed 
substantial improvement in progression-free survival 
and symptomatic relief [64]. Given their expression of 
somatostatin receptors, pheochromocytomas and para-
gangliomas are potential therapeutic targets for [177Lu]
Lu-DOTATOC. This application is supported by pre-
liminary investigations, but further research is needed 
on its efficacy and safety for these malignancies [65]. 

Promising results were obtained for PRRT with 177Lu/90Y 
(DOTATATE or DOTATOC) in 69 patients, including 
46 patients with pancreatic NET. The results were par-
ticularly encouraging for patients with a Ki-67 index 
of ≤ 55%, even for those who had previously failed 
chemotherapy [4]. Success in [177Lu]Lu-DOTATOC 
therapy relies on precise patient selection based on 
somatostatin receptor imaging to ensure optimal re-
ceptor avidity and therapeutic response. Advanced 
imaging modalities, such as [68Ga]Ga-DOTATATE, can 
be used to characterise receptor expression patterns 
[65, 66]. Customisation of the [177Lu]Lu-DOTATOC 
treatment regimen involves meticulous consideration 
of dosimetry and administration schedule, tumour bur-
den, and kidney function to optimise therapeutic effi-
cacy while mitigating haematological and renal toxicity 
[67, 68]. Ongoing research is exploring the synergistic 
potential of combining [177Lu]Lu-DOTATOC with other 
targeted therapies and immunotherapies. Challenges 
include optimising dosimetry for therapeutic response 
and managing renal toxicity and myelosuppression [69].

[131I]I-MIBG
Iodine-131 metaiodobenzylguanidine ([131I]I-MIBG) is 
a radiolabelled guanethidine analogue that plays a role 
in both diagnostics and targeted therapeutic interven-
tions for NETs [70]. [131I]I-MIBG exhibits high affinity 
for the norepinephrine and dopamine transporters in 
neuroendocrine cells, which is the basis for its diagnos-
tic imaging and therapeutic applications. [131I]I-MIBG 
also has the potential to provide insights into molecu-
lar mechanisms of the complex biochemical web that 
comprises the adrenergic neuroendocrine signalling 
pathways [9, 71, 72].

Clinical applications
[131I]I-MIBG scintigraphy, characterised by high-resolu-
tion imaging capabilities beyond those of conventional 
imaging, has emerged as a sophisticated diagnostic 
tool. The high specificity and sensitivity of [131I]I-MIBG 
is useful in precise localisation and staging of NETs, in 
gathering insight into primary lesions and metastatic 
dissemination [71], and especially in detecting elusive 
tumours like pheochromocytomas and paragangliomas 
[73, 74].

Beyond diagnostics, [131I]I-MIBG delivers targeted 
radiation therapy to neuroendocrine cells expressing 
norepinephrine and dopamine transporters. Clinical 
efficacy has been demonstrated for precision therapy 
of metastatic pheochromocytomas and paragangliomas. 
The trajectory of endocrinology has been shaped by 
continual advancements in radiopharmaceutical devel-
opment and imaging technologies. Newer radiolabelled 
compounds with high molecular specificity, like [131I]
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I-MIBG, combined with high-resolution imaging mo-
dalities, can improve diagnosis and address concerns 
related to radiation exposure [75]. Future research 
refining the scientific and clinical applications of [131I]
I-MIBG has potential to advance the state of the art in 
the treatment of endocrine malignancies [74, 76, 77].

[212Pb]Pb-DOTAMTATE (AlphaMedix™)
[212Pb]Pb-DOTAMTATE is a radiolabelled compound 
designed for targeted treatment of NETs. The backbone 
of the radiopharmaceutical consists of the chelating 
agent DOTAM, a derivative of DOTA, conjugated to 
the somatostatin analogue octreotate. This molecular 
design ensures a high specificity for the somatostatin 
receptor SSTR2. 

212Pb is a radionuclide with a half-life 
of 10.6 hours, and it emits beta particles. The thera-
peutic effectiveness of [212Pb]Pb-DOTAMTATE lies in 
the combined longer-range “crossfire” effect of beta 
particles combined with shorter-range alpha particles 
emitted by the daughter radionuclide of 212Pb, 212Bi, 
which has a half-life of 61 min. This combination en-
hances the overall radiation dose delivered to the tu-
mour microenvironment [78, 79].

Preclinical studies involving animal models have 
demonstrated the ability of [212Pb]Pb-DOTAMTATE to 
specifically bind to somatostatin receptors on NET cells, 
resulting in efficient internalisation and subsequent 
alpha particle-induced apoptosis. Notably, these stud-
ies have shown promising tumour regression with 
a minimal impact on non-targeted tissues. Clinical trials 
evaluating the safety and efficacy of [212Pb]Pb-DOTA-
MTATE in patients with somatostatin receptor-positive 
NETs are ongoing. Initial reports indicate a favourable 
safety profile and encouraging antitumour responses, 
warranting further investigation into long-term out-
comes and potential integration of this novel therapeu-
tic approach into clinical practice [80].

[213Bi]Bi-DOTATOC 
Bismuth-213 is a promising alpha-emitting radioisotope 
with a half-life of 45.6 minutes, making it suitable for 
targeted alpha-particle therapy (TAT) applications [81]. 
When 213Bi is coupled with the somatostatin analogue 
DOTATOC, the resulting [213Bi]Bi-DOTATOC is a potent 
radiopharmaceutical for the treatment of NETs that 
express SSTRs. The high linear energy transfer of alpha 
particles emitted by 213Bi results in a short path length, 
confining cytotoxic effects to the targeted tumour cells 
and minimising the damage to adjacent healthy tis-
sues. Preclinical studies have demonstrated the efficacy 
of [213Bi]Bi-DOTATOC in inhibiting tumour growth 
and inducing apoptosis in SSTR-positive tumour cells 
[78]. In terms of dosimetry, investigations have been 
conducted to optimise the administered activity of 

[213Bi]Bi-DOTATOC to achieve an effective therapeutic 
dose while mitigating potential radiation toxicity to 
surrounding organs [82].

Theranostics applications

[64Cu]Cu-DOTATATE
[64Cu]Cu-DOTATATE is an emerging radiophar-
maceutical that is used for the diagnosis of NETs. 
This positron-emitting radiotracer has the advan-
tages of high-resolution PET with a longer half-life 
(12.7 h) for extended imaging periods. As with other 
octreotate-containing radiopharmaceuticals, the ac-
tion of [64Cu]Cu-DOTATATE is based on SSTR2 target-
ing, and offers a novel approach for both diagnostic 
and therapeutic purposes [83]. 

Diagnostic applications 
[64Cu]Cu-DOTATATE allows high-resolution imaging 
and enables visualisation of SSTR2 expression in endo-
crine tissues [84], and it has demonstrated remarkable 
sensitivity and specificity for the detection of NETs. 
Its ability to identify and localise lesions, especially 
in cases where conventional imaging modalities may 
fail, can contribute to more accurate staging and treat-
ment planning [83]. Several studies have highlighted 
the superiority of [64Cu]Cu-DOTATATE over traditional 
imaging techniques for the diagnosis of NETs [85].

Therapeutic implications
Beyond its diagnostic role, [64Cu]Cu-DOTATATE is 
promising as a theranostic agent. The beta-emitting 
properties of copper-64 can be harnessed for tar-
geted radionuclide therapy, delivering therapeutic 
doses precisely to SSTR2-expressing tumours [86]. 
Clinical trials exploring the efficacy and safety of 
64Cu-DOTATATE-based theranostics have shown prom-
ising results for the management of NETs.

Although the role of [64Cu]Cu-DOTATATE in endo-
crinology is expanding, some challenges remain. Opti-
mal dosimetry, patient selection, and long-term effects 
require further investigation. Another area for future 
research is the exploration of [64Cu]Cu-DOTATATE in 
endocrine disorders other than NETs. With its dual func-
tionality as a diagnostic imaging tool and a therapeutic 
agent, [64Cu]Cu-DOTATATE represents a significant 
advancement in the field of endocrinology, particularly 
toward personalised medicine. 

[64Cu]Cu-Cetuximab
[64Cu]Cu-cetuximab is a radiopharmaceutical used for 
the imaging and therapy of patients with head and neck 
squamous cell carcinoma. Cetuximab is a monoclonal 
antibody targeting epidermal growth factor receptor 



10

Novel radiopharmaceuticals in endocrinology	 Mateusz Pociegiel et al.

R
EV

IE
W

(EGFR). Anderson and Ferdani [87] have reviewed 
the molecular aspects, synthesis, and applications of 
[64Cu]Cu-Cetuximab. [64Cu]Cu-Cetuximab has high 
potential in diagnosing and treating endocrine-related 
disorders and personalised medicine, and it has dem-
onstrated efficacy for various cancer types. The con-
jugation of copper-64 to cetuximab allows the specific 
targeting of EGFR-expressing cells for visualisation of 
EGFR status in endocrine tissues. [64Cu]Cu-Cetuximab 
is synthesised by chelation of the radionuclide to a bi-
functional chelator linked to the antibody [88] .

Clinical applications
Beyond diagnostic imaging, [64Cu]Cu-Cetuximab 
offers potential for theranostics in endocrinology. 
[64Cu]Cu-Cetuximab can deliver localized radiation to 
EGFR-expressing cells of NETs, such as in pancreatic 
cancer [89]. [64Cu]Cu-Cetuximab represents a promis-
ing avenue for targeted therapy of endocrine-related 
disorders, but clinical studies are needed to validate 
the diagnostic and therapeutic potential of [64Cu]
Cu-Cetuximab for clinical applications in endocrinol-
ogy, especially in regard to safety, efficacy, and patient 
outcomes [90].

[225Ac]Ac-DOTA-JR11
[225Ac]Ac-DOTA-JR11 is a novel radiopharmaceutical 
for diagnosis and targeted radionuclide therapy of 
NETs. [225Ac]Ac-DOTA-JR11 is a high-affinity antago-
nist of SSTR2. In contrast to SSTR agonists, which are 
internalised in vesicles after receptor binding, SSTR–an-
tagonist complexes mostly remain on the surface of 
the cell. [225Ac]Ac-DOTA-JR11 exhibits excellent stability 
and favourable pharmacokinetics that allow for specific 
targeting of tumour cells while minimising off-target 
effects [91].

Clinical applications
The diagnostic potential of [225Ac]Ac-DOTA-JR11 is root-
ed in its ability to selectively bind to SSTR2. Molecular 
imaging with [225Ac]Ac-DOTA-JR11 offers high sensitiv-
ity and specificity to aid in precise staging and treatment 
planning. Actinium-225 has potent alpha-emitting 
properties and is an ideal radionuclide for targeted 
therapy [91, 92]. Despite its promising profile, the clini-
cal use of [225Ac]Ac-DOTA-JR11 remains challenging. 
Ongoing research to optimise dosimetry, manage po-
tential toxicities, and refine patient selection criteria are 
needed for clinical translation of [225Ac]Ac-DOTA-JR11. 
Development of personalised treatment regimens 
and integration of [225Ac]Ac-DOTA-JR11 with other 
therapeutic modalities may further improve outcomes 
in patients with NETs. [225Ac]Ac-DOTA-JR11 probably 
represents a significant milestone in the evolution of 

targeted radionuclide therapy for neuroendocrine 
tumours [91, 93].

Other radio compounds

Endocrine tumours, including those originating from 
the thyroid, pancreas, and parathyroid glands, fre-
quently metastasise to bones, where they cause debili-
tating pain. Conventional treatments often provide only 
limited efficacy for pain management, necessitating 
alternative approaches. Rhenium-188 (188Re) and sa-
marium-153 (153Sm), because of their unique nuclear 
properties, offer targeted therapeutic options for ad-
dressing painful bone metastases. 

188Re is well suited for therapeutic applications ow-
ing to its favourable decay characteristics. 188Re under-
goes beta decay to form stable osmium-188, emitting 
beta particles with a maximum energy of 2.12 MeV. 
These high-energy beta particles allow for effective pen-
etration and localised irradiation within the targeted 
bone metastatic foci. Several studies have demonstrated 
the efficacy of 188Re-labelled radiopharmaceuticals, 
such as [188Re]Re-hydroxyethylidene diphosphonate 
(HEDP), for pain relief of bone metastases from endo-
crine tumours [94, 95].

153Sm, an emitter of beta particles and gamma rays, 
has been extensively studied for its use in palliative 
care of painful bone metastases. For patients with 
bone metastases and accompanying clinical symptoms, 
palliative radioisotope therapy with 86Sr or 153Sm should 
be considered following a positive verification in bone 
scintigraphy using [99mTc]Tc-MDP [96]. The beta particles 
emitted by 53Sm travel shorter distances than those 
emitted by 188Re, making it suitable for treating smaller 
lesions or those in close proximity to critical structures. 
Studies utilizing [53Sm]Sm-ethylene diamine tetrameth-
ylene phosphonate (EDTMP) have shown significant 
pain reduction and improvement in the quality of life of 
patients with bone metastases from various malignan-
cies, including endocrine tumours [97, 98].

The use of 188Re and 53Sm in multimodal therapeutic 
approaches is an area of ongoing research. Preliminary 
studies suggest that combining these radionuclides may 
provide synergistic effects, enhance overall therapeutic 
outcomes, and potentially reduce radiation-induced 
toxicity.

Future directions

The development of novel radiopharmaceuticals in 
endocrinology is rapidly advancing. Researchers con-
tinue to explore, validate, and extend applications of 
the compounds reviewed in this article as well as new 
radiolabelled compounds that target different receptors 
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and biomarkers associated with endocrine disorders. 
Advancements in radiochemistry and molecular imag-
ing will continue to make possible the creation of more 
specific and effective radiopharmaceutical tools for 
targeted therapies and personalised medicine within 
endocrinology. Integration of artificial intelligence, 
radiomics, and other emerging technologies with these 
imaging techniques is likely to profoundly influence 
diagnostic precision of endocrine disorders.

Conclusion

Exploration of novel radiopharmaceuticals is a prom-
ising frontier for improving diagnostics and targeted 
therapies for clinical endocrinology. This compre-
hensive review surveys the evolving landscape 
of molecular imaging and its potential to revolutionise 
precision medicine. As we navigate the challenges of 
adoption of these innovative technologies, collabora-
tive efforts among researchers, clinicians, and indus-
try stakeholders are crucial for translating them into 
tangible advancements that improve patient care. 
Radiopharmaceuticals are continually being refined, 
demonstrating a commitment in this field to push 
the boundaries of medical science and bring us closer 
to a future in which personalised interventions have 
redefined the management of endocrine conditions.
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