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(NAFLD is diagnosed in patients with confirmed fatty 
liver disease where excessive alcohol consumption 
and other causes of hepatosteatosis, like viral hepatitis 
or autoimmune diseases, are not present). This ap-
proach appears to be correct for various reasons, as 
emphasised in expert research: NAFLD is indirectly 
linked to metabolic features crucial for the advancement 
of fatty liver disease; the development of new treat-
ment methods is hindered by the absence of NAFLD 
criteria based on these metabolic factors and addition-
ally; patients not meeting NAFLD criteria may face 
stigma due to the term “non-alcoholic” [3, 4]. In simple 
words, MAFLD, given the significant link between 
fatty liver disease and insulin resistance, is important, 
because almost all  diabetic individuals and 60% of 
patients with metabolic syndrome display signs of ste-
atohepatitis on liver biopsies, indicating that MAFLD 
could be an early consequence of diabetes, obesity, 
and their cohabitation — known as diabesity [5, 6]. 
Insulin resistance stimulates lipogenesis in the liver 
and impairs lipolysis in both the liver and adipose tis-
sue — this leads to an increased movement of free fatty 
acids into the liver and disrupts the function of adipose 
tissue by influencing the secretion of adipokines and cy-
tokines. An important problem of fatty liver disease is 
the development of chronic inflammation, liver fibrosis, 

Introduction

Metabolic-associated fatty liver disease (MAFLD) is 
a novel diagnostic concept developed in 2020 by Eslam 
et al. to highlight the significance of metabolic disorders 
such as overweight, obesity, and type 2 diabetes as 
the primary factors contributing to fatty liver disease 
[1]. MAFLD is an inflammatory liver disease that affects 
around 24–36% of the global population. It involves 
the accumulation of lipids, primarily triglycerides, in at 
least 5% of liver cells — the development of the disease 
is influenced by various factors such as genetics, envi-
ronment, and lifestyle [2]. MAFLD is diagnosed when 
fatty liver disease is present along with type 2 diabetes, 
overweight, or obesity (determined by body mass in-
dex thresholds specific to the population), or at least 2 
other metabolic abnormalities [such as increased waist 
circumference, arterial hypertension, hypertriglyceri-
daemia, low high-density lipoprotein (HDL) cholesterol 
levels, prediabetes, elevated C-reactive protein levels, 
or increased homeostasis model assessment of insulin 
resistance (HOMA-IR)] — specific diagnostic criteria 
for MAFLD are outlined in Figure 1.

MAFLD has replaced the term non-alcoholic fatty 
liver disease (NAFLD); however, it is important to note 
the distinct criteria for diagnosing each condition 
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Abstract 
Metabolic-associated fatty liver disease (MAFLD) is a newly coined term that links the presence of liver steatosis (characterised by the ac-
cumulation of lipids in at least 5% of liver cells) with a condition of overall systemic metabolic dysfunction. MAFLD impacts 24–36% of 
the global population. As per the official guidelines, a diagnosis of MAFLD can be made when hepatosteatosis is accompanied by type 2 
diabetes mellitus, overweight, obesity, or at least 2 other specific metabolic abnormalities (increased waist circumference, hypertension, 
dyslipidaemia, prediabetes, elevated C-reactive protein level, or increased homeostasis model assessment of insulin resistance: HOMA-IR). 
MAFLD is a heterogeneous illness associated with multiple diseases that impact various organs, particularly endocrine organs. Endocri-
nopathies can significantly influence the progression and severity of MAFLD. This paper provides a brief overview of the existing research 
on the connection between liver steatosis and the functioning of endocrine organs. The authors also propose dividing endocrine diseases 
into those having a possible, strong, and clear relationship with hepatosteatosis (for the purpose of preliminary recommendations regard-
ing the need for monitoring the possible progression of MAFLD in these groups of patients).
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to suggest using recombinant GH as a treatment for 
MAFLD without concurrent GH deficiency. However, 
it is important to be vigilant and actively diagnose pa-
tients with GH deficiency, either using standard tools 
like abdominal ultrasound or more advanced methods 
like elastography liver examination to assess the sever-
ity of liver steatosis and fibrosis.

The connection between acromegaly (character-
ised by excessive GH secretion) and hepatic steatosis 
remains unclear. Higher levels of GH and IGF-1 are 
linked to increased lipolysis and a reduction in the vol-
ume of visceral and superficial adipose tissue (which 
is probably associated with enhanced ATP production 
in the liver [22]) — however, acromegaly also leads to 
insulin resistance, resulting in carbohydrate disorders: 
approximately 13–30% of patients develop diabe-
tes mellitus, while 60–70% experience impaired glucose 
tolerance, the severity of these conditions is linked to 
the duration and intensity of acromegaly, the patient’s 
age, and the concentrations of GH, IGF-1, and insu-
lin-like growth factor-binding protein 3 (IGFBP-3) [23, 
24]. Current research indicates that individuals with 
active acromegaly tend to have a reduced volume of 
liver fat, and successful biochemical management of 
acromegaly can lead to an increase in this lipid content 
[25–27]. Conversely, other studies have demonstrated 
that patients with acromegaly exhibit higher incidences 
of hepatosteatosis, which may improve with disease 
control [28]. This difference may be due to the unique 
body structure of acromegaly (acromegalic lipodys-
trophy, which affects the function of GH and IGF-1 
receptors differently from the general population) 
— additionally, comorbidities and complications of ac-
romegaly, like the above-mentioned carbohydrate me-
tabolism disorders, could play a role [29]. Additional 
research is required to further our comprehension of 
this phenomenon.

PRL is a polypeptide hormone secreted by lacto-
troph cells in the anterior pituitary gland, primarily 
regulated by dopamine, thyroid-stimulating hormone 
(TSH), TSH-releasing hormone, and circulating oestro-
gens. PRL primarily acts in pregnancy and lactation 
but also influences food intake, glucolipid metabolism, 
and the development of liver steatosis, due to the fact 
that prolactin receptors are found in the liver, pancreas, 
and adipose tissue, where their activation inhibits fatty 
acid synthase in adipose tissue and reduces hepatic 
lipid content [9, 30, 31]. Hyperprolactinaemia is the pre-
dominant malfunction of the hypothalamic-pituitary 
axis (affecting 0.4% of the general adult population), 
more prevalent in women, (with a rate of 9–17% in 
women with reproductive disorders) [30] — it can lead 
to insulin resistance and carbohydrate metabolism 
disorders due to the structural resemblance between 

cirrhosis, and hepatocellular carcinoma — MAFLD 
concept is more effective than NAFLD in identifying 
patients with severe hepatic fibrosis [7]. 

MAFLD is a heterogeneous illness, associated with 
a wide range of multiple organ diseases, including 
endocrinopathies, and there is increasing evidence sug-
gesting they might significantly influence the progres-
sion and severity of the disease. This short review dis-
cusses the existing research about the relationship 
between MAFLD (and slightly broader hepatosteatosis) 
and the function of particular endocrine organs.

Hepatosteatosis in relation to 
hypothalamus and pituitary gland function

Current literature on hepatic steatosis in hypothalamus 
and pituitary gland illnesses discusses mainly the im-
pact of growth hormone (GH) and prolactin (PRL) 
secretion abnormalities, with some consideration given 
to vasopressin as well.

GH is released by the anterior pituitary in a pul-
satile manner and stimulates the production of insu-
lin-like growth factor 1 (IGF-1). The GH–IGF-1 axis is 
controlled by a specific intracellular signalling pathway 
that includes Janus kinase 2 (JAK-2) and signal trans-
ducer and activator of transcription 5 (STAT-5) — this 
pathway regulates target genes, resulting in enhanced 
systemic insulin resistance, lipolysis in visceral adipose 
tissue, and senescence of hepatic stellate cells, which 
reduces hepatofibrosis [8, 9]. Therefore, patients with 
GH deficiency (regardless of its cause) usually present 
an android type of obesity, increased body fat (by about 
10% through intrahepatic lipid accumulation), an ath-
erogenic lipid profile, and signs of insulin resistance, 
which lead to the development of metabolic syndrome 
and hepatosteatosis linked with metabolic dysfunc-
tion (like MAFLD), which was confirmed in previous 
scientific reports [10–14]. It is worth emphasising that 
treating GH deficiency with recombinant human GH 
or using tesamorelin (an analogue of the GH-releas-
ing hormone) has been shown to have a positive impact 
on the course of fatty liver disease, reducing hepatic 
and visceral fat deposits, limiting the degree of hepa-
tofibrosis (by reduction in the levels fibrosis markers: 
hyaluronic acid and type IV collagen), and lowering 
the concentrations of transaminases, independent of 
its effects on body weight and composition [15–19]. 
The increased level of pro-inflammatory cytokines 
[like tumor necrosis factor alpha (TNF-a) or C-C motif 
chemokine ligand 3, associated with GH deficiency] 
is also reduced after GH replacement therapy [20]. 
Although it is proven that patients with metabolically 
determined hepatic steatosis and fibrosis show de-
creased levels of GH and IGF-1 [21], this is insufficient 
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PRL and GH, down-regulation of insulin receptors, 
and increased concentrations of free fatty acids. Ad-
ditional problems include hypogonadism and the an-
tidopaminergic impact of elevated PRL production, 
which contribute to overweight, obesity, and athero-
genic dyslipidaemia [24]. Chronic hyperprolactinaemia 
can cause fatty liver disease by affecting the signalling 
pathways of de novo lipogenesis [32]. The case report 
of a 13-year-old patient who developed NAFLD due 
to prolactinoma-related obesity and all these diseases 
were successfully treated with long-acting dopamine 
agonist cabergoline (albeit a single one) also seems 
to confirm the influence of hyperprolactinaemia on 
the development of fatty liver disease [33]. Interesting-
ly, the study by Zhu et al. did not establish a connection 
between elevated prolactin levels and liver fat accumu-
lation in males, indicating a potential sex-specific issue 
that is not clearly understood [34]. Even more doubts 
are raised by the fact that we have data about how 
severe fatty liver disease may also be associated with 
low PRL levels [31]. In 2022, a Chinese study team 
confirmed that low PRL levels within the normal range 
were indicators of MAFLD — they also found that as 
PRL levels rose, the incidence of MAFLD decreased in 
both males and females [35]. Establishing a causal as-
sociation between elevated PRL levels and MAFLD is 
challenging due to the correlation between PRL levels 
and body mass index (BMI), as well as the presence of 
other comorbidities that may have a greater impact on 
the development of steatosis.

Arginine vasopressin (AVP), also known as antidi-
uretic hormone (ADH), is a neurohormone produced 
from a pre-pro-hormone precursor in the supraoptic 
and paraventricular nuclei of the hypothalamus in 
reaction to elevated plasma osmolality and reduced 
blood volume. Due to the short half-life and poor 
stability of AVP in plasma samples, we use copeptin in 
clinical practice — a stable and physiologically inactive 
fragment of pro-vasopressin, released alongside AVP 
[36]. Recent investigations have shown that copeptin 
concentration is a reliable indicator of the severity 
of fatty liver disease, independent of body adiposity 
and other metabolic disorders, but only in cases of 
diabetes and obesity [37–40]. However, it has not been 
demonstrated in a non-animal model that AVP can 
impact the development of liver steatosis. Consider-
ing ADH’s effect on hepatic fat metabolism, it appears 
plausible because it reduces plasma non-esterified 
fatty acids, stimulates hepatic lipogenesis (via the V1a 
receptor), and suppresses liver lipolysis [41–43]. We 
await additional study focused on diagnosing MAFLD 
in ADH-related conditions such as diabetes insipidus 
or syndrome of inappropriate antidiuretic hormone 
secretion (SIADH).

Thyroid function and liver steatosis

Thyroid hormones elevate the basal metabolic rate, 
stimulate protein synthesis and catabolism (with ca-
tabolism being more prominent), and initiate hepatic 
lipogenesis and lipolysis in the liver and adipose tissue, 
which provide fatty acids for the production of ATP 
by influencing on cholesterol synthesis and clearance 
and its conversion into bile acids, regulation of the ex-
pression of the sterol regulatory element-binding pro-
tein-2 (SREBP-2), and stimulation of lipoprotein lipase 
catabolizing triglyceride-rich lipoproteins, reducing 
the risk of developing an atherosclerotic lipid profile. 
Thyroid hormone deficiency leads to weight gain, 
an atherogenic lipid profile, an elevated concentra-
tion of free fatty acids, reduced tissue glucose uptake, 
and increased oxidation, resulting in insulin resistance. 
Additionally, hypothyroidism leads to the secretion 
of counter-regulatory hormones such as cortisol, cat-
echolamines, or glucagon. This phenomenon has also 
been noticed in subclinical hypothyroidism, where 
the peripheral hormone concentrations remain nor-
mal and only the TSH level is raised [24, 44, 45]. In 
the Rotterdam Study analysing the incidence of fatty 
liver disease in patients with hypothyroidism or hyper-
thyroidism, only patients with hypothyroidism were 
characterised by a statistically significantly higher odds 
ratio for this liver structure disorder [1.32; 95% confi-
dence interval (CI): 1.08–1.62] — a similar relationship 
was also observed for the development of liver fibrosis 
(defined as liver stiffness in transient elastography ex-
amination greater than or equal to 8 kPa) — significant 
results were obtained only for subclinical hypothyroid-
ism (2.14; 95% CI: 1.04–4.07) and clinical hypothyroid-
ism (6.64; 95% CI: 1.04–23.98) [46]. Similar outcomes 
were achieved in further meta-analyses [47, 48].

Hypothyroidism per se may cause a modest el-
evation in serum alanine aminotransferase (ALT) 
and gamma-glutamyl transferase peptide (GGTP) con-
centrations, possibly resulting from hepatic steatosis. 
Potential causative factors include impaired triglycer-
ide metabolism in the liver (by promoting hepatic lipo-
genesis due to increased SREBP-1c activity), reduced 
activity of glucose uptake receptors in pancreatic beta 
cells (leading to decreased insulin secretion, decreased 
lipolysis, and increased transport of free fatty acids to 
the liver) or elevated adipocytokines concentrations 
such as leptin, visfatin, IL-1, and TNF-a with decreased 
adiponectin (seen characteristically in hypothyroid-
ism, diabetes, and obesity and contributing to hepatic 
inflammation via an increase in oxygen free radicals) 
[49–51]. The frequency of fatty liver disease appears 
to be inversely proportional to the concentration of 
fT4, and this relationship follows a dose-dependent 



240

Hepatosteatosis and the role of hormones	 Szymon Suwała, Roman Junik

R
EV

IE
W

pattern [52]. We also must not forget about the com-
plications of fatty liver disease – in addition to the pre-
viously mentioned effects of free radicals, Sinha et 
al. proposed that a possible reason for hepatitis in 
the course of MAFLD (MASH: metabolic-associated 
steatohepatitis) with the coexistence of hypothyroid-
ism could be the impaired expression of intrahepatic 
deiodinase, leading to reduced levels of T3 in the liver 
[53]. Several studies conducted by scientists from China 
and Korea have shown a direct and independent posi-
tive link between NAFLD/MAFLD and AITD — Chen 
et al. suggested that the main link in this relationship 
could be the induction of inflammation by adipokines 
(such as IL-6 or leptin) and the activation of receptors 
that can identify pathogen-associated molecular pat-
terns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) through Toll-like receptors and other 
receptors found on thyrocytes; however, the authors 
emphasised the necessity for additional research on 
this topic [54–56]. This is particularly important when 
we take into account the results of the study by Zhang 
et al., who found that antibodies against thyroglobulin 
are potentially a protective factor for the development 
of MAFLD, especially in women [57]. It seems justi-
fied to conclude that in patients with hypothyroidism, 
particularly caused by autoimmunity, it is important to 
check for the development of MAFLD and ensure cor-
rect therapy aimed at maintaining the euthyroid state.

Research on the prevalence of fatty liver disease 
in hyperthyroidism is conclusive – individuals with 
this condition have reduced intrahepatic fat volume 
and a decreased occurrence of hepatosteatosis [46, 58]. 
Although this relationship seems to be different from 
the one we are looking for, one study found that hepa-
tosteatosis is linked to a higher occurrence of lymph 
node metastasis and the BRAFV600E mutation in papillary 
thyroid carcinoma in females [59]. There is currently no 
evidence or justification to consider this thyroid-related 
illnesses as pathophysiologically linked to the develop-
ment of MAFLD.

MAFLD and calcium-phosphate 
metabolism

The current research on the connection between fatty 
liver illness related to metabolism and calcium-phos-
phate metabolism disorders mostly focuses on vitamin D.

Vitamin D is a multifunctional hormone that plays 
a role far beyond regulating calcium and phospho-
rus homeostasis and bone health; its impact extends 
to various organs due to the widespread presence of 
vitamin D receptors. Numerous studies have confirmed 
its involvement in altering inflammatory processes, 
among which we include MAFLD. The National Health 

and Nutrition Examination Survey (NHANES III) 
data analysis revealed an inverse correlation between 
patients’ serum vitamin D levels and the severity of 
NAFLD [60]. A meta-analysis including 8 randomised 
controlled trials confirmed that vitamin D supplemen-
tation has a protective effect against insulin resistance 
and reduces serum ALT levels in patients with fatty 
liver disease [61]. A multivariable analysis conducted 
by scientists from Korea showed that by maintaining 
a serum 25(OH)D level ≥ 30 ng/mL, it is possible to 
reduce the risk of developing NAFLD by 21% [62]. 
Dal et al.’s study revealed that a decrease of 1 ng/dL 
in 25(OH)D levels is associated with a 3.7% increase 
in the risk of fatty liver disease [63]. Vitamin D in its 
active form modulates the immune system, causing 
anti-inflammatory, antifibrogenic, and antiprolifera-
tive effects in the liver [by inhibiting the expression in 
the liver of such mediators as platelet-derived growth 
factor, transforming growth factor b (TGF-b) collagen, 
a-smooth muscle actin, or tissue inhibitors of metallo-
proteinase-1], as well as acting on oxidative stress mark-
ers in adipose tissue [64–67]. Evidence also shows that 
a vitamin D-deficient diet enhances toll-like receptor 
activation, which leads to insulin resistance and impacts 
lipid metabolism in the liver, ultimately promoting 
steatosis [68]. The existence of liver-specific deletions 
of vitamin D receptor (VDR) and hepatocyte nuclear 
factor 4 alpha (HNF4a) genes can also lead to insulin 
resistance — vitamin D supplementation can counteract 
this impact by interacting with HNF4a and activating 
VDR [69]. Vitamin D treatment in human promonocytic 
cells has been found to control the transcription of 
the insulin receptor (IR) gene, resulting in heightened 
phosphatidylinositol 3-kinase (PI3K) activity and im-
proved insulin-induced glucose oxidation and cellular 
transport — when PI3K interacts with the pleckstrin ho-
mology domain, leading to the phosphorylation of 
phosphoinositide-dependent protein kinase and in-
creased insulin sensitivity. Deleting p110b in adipocytes 
(the catalytic site of PI3K) in an in vivo investigation 
resulted in adipose tissue insulin resistance, obesity, 
and hepatosteatosis, but this has not been confirmed 
in human studies on NAFLD or MAFLD [70–72]. Liver 
steatosis can result in hepatofibrosis — in an animal 
study conducted by Wahsh et al., the administration of 
a VDR agonist (calcipotriol) was found to impact fibro-
genic pathways and mitigate liver fibrosis by decreasing 
the levels of hepatic collagen-1-alpha-1, tissue inhibitor 
of metalloproteinase (TIMP), and TGF-b1 protein, as 
well as the activity of the TGF-b-SMAD pathway, which 
is a significant fibrogenic mechanism in the liver [73]. 

Some studies did not establish a clear connec-
tion between vitamin D levels and did not find any 
positive impact of vitamin D supplementation on 
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the progression of fatty liver disease — differences in 
research findings can stem from multiple factors, but 
primarily from the diversity of the groups examined 
[74–76]. An interesting observation came from Patel 
et al., who showed that individuals with fatty liver 
disease exhibit a lighter skin tone, which is essential in 
the skin’s photochemical synthesis of vitamin D [74]. 
Genetic variations may also have a significant impact 
— VDR polymorphisms (especially those very common 
in the general population like rs4588 and rs7041) may 
strongly impact the response to vitamin D treatment, 
affecting serum 25(OH)D levels and metabolic param-
eters [such as insulin resistance, glycated haemoglobin 
(HbA1c), and lipid profile] [77–79]. 

Considering all the information provided, the poten-
tial connection between vitamin D and the formation of 
liver steatosis is plausible but needs more investigation. 
Although liver steatosis may not directly necessitate it, 
it is crucial to acknowledge that diabetes and obesity, 
which are part of the MAFLD diagnosis criteria and are 
also conditions associated with an increased risk of 
vitamin D insufficiency, require evaluation of 25(OH)
D levels in the blood serum and administration of ap-
propriate vitamin D doses in cases of deficiency [80].

Adrenal hormones and hepatosteatosis

Glucocorticosteroids (GCS) are synthesised in the zona 
fasciculata of the adrenal glands in response to ACTH 
secreted by the pituitary gland. Cortisol, the most 
significant hormone from GCS group, controls several 
processes to maintain metabolic balance and facilitate 
adjustment to stressful conditions — elevated GCS lev-
els have been linked to the development of all aspects 
of metabolic syndrome, including obesity, hyperglycae-
mia, hypertension, dyslipidaemia, as well as liver steato-
sis. Hypercortisolaemia results in increased lipolysis of 
adipose tissue and catabolism of muscle proteins, which 
serve as materials for glucose generation in the liver, 
subsequently delivering glucose to the brain. Increased 
lipolysis in adipose tissue results in higher levels of 
glycerol and free fatty acids entering the bloodstream, 
which are subsequently taken up by the liver, causing el-
evated triglyceride production and hepatosteatosis. It is 
also worth remembering that GCS increases the produc-
tion of triglycerides by regulating gene transcription, 
which turns carbohydrates into fatty acids through de 
novo lipogenesis [81, 82]. Although not all studies con-
firm this, the incidence of liver steatosis in disease linked 
with hypercortisolaemia (like Cushing’s syndrome) 
is estimated to be more frequent than in the general 
population and ranges from 26% to 56% [83–85]; on 
the other hand, NAFLD/MAFLD patients exhibited 
subclinical hypercortisolaemia, elevated urine cortisol 

levels, and decreased cortisol suppression in response 
to dexamethasone [86, 87]. Steroidogenic enzymes 
are highly significant from a pathological perspective. 
GCS is synthesised by the action of 11b-hydroxyster-
oid-dehydrogenase-1 and -2 (11b-HSD1 and 11b-HSD2), 
which interconvert cortisone and cortisol — both 
of these enzymes are highly expressed in the liver, 
and abnormalities in their function may also play a role 
in liver structural disorders [9]. This is confirmed by 
studies based on animal models — transgenic mice with 
overexpressing 11b-HSD1 in adipocytes had higher 
GCS levels and rapidly exhibited metabolic syndrome 
symptoms (such as liver steatosis); conversely, mice 
with knockout 11b-HSD1 had lower GCS levels, de-
creased triglycerides, and enhanced hepatic insulin 
sensitivity, regardless of exogenous GCS administration 
[88–90]. It has been theorised that selective inhibition of 
11b-HSD1 may be an effective therapy for fatty liver dis-
ease — Hoffmann-La Roche developed an experimen-
tal oral drug (RO5093151) that showed effectiveness 
and safety in reducing liver fat in patients with NAFLD 
during a phase 1b clinical trial, in which the average fat 
content decreased from 16.7% to 14.3% after 12 weeks 
of use; however, the current status of this treatment 
approach is unknown [91]. Other important enzymes 
in glucosteroidogenesis include 5a- and 5b-reductase, 
which enhance GCS clearance and restrict their avail-
ability in tissues (for example, by converting cortisol into 
inactive forms like tetrahydrometabolites or 5a-tetrahy-
drocortisol through alpha-ring metabolism) [82]. Once 
again, evidence for the importance of the action of these 
enzymes is provided by animal models — 5a-reductase 
knockout mice on a high-fat diet or rats treated with 
finasteride to inhibit 5a-reductase showed increased 
progression of hepatic steatosis [92, 93]. An increase 
in hepatic cortisol clearance by 5a-reductases is believed 
to be a protective mechanism that helps maintain 
the liver ’s metabolic function by reducing exposure 
to cortisol and preventing harmful effects caused by 
glucocorticoids, such as hepatic lipogenesis and glu-
coneogenesis with increased glucose output, which 
worsen hepatic and peripheral insulin resistance.  
Interestingly, however, in human studies, hepatic gluco-
corticosteroid regulation changes as steatosis progresses 
to steatohepatitis. In simple steatosis, 5a-reductase 
levels rise and 11b-HSD1 levels drop, resulting in de-
creased hepatic cortisol levels — however, in hepatitis, 
5a-reductase levels decrease and 11b-HSD1 levels 
increase (particularly in CD68-positive macrophages 
in liver, indicating potential involvement of 11b-HSD1 
in the response to chronic inflammation), leading to 
elevated hepatic cortisol levels [9, 94]. Considering 
the majority of research findings and the clear associa-
tion between high levels of cortisol and the develop-
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ment of features of metabolic syndrome, it is highly 
likely that there is a strong connection between ex-
cessive GCS secretion and MAFLD, which practicing 
physicians should be aware of.

Mineralocorticosteroids (MCS) are hormones 
synthesised by the outermost region of the adrenal 
cortex, known as the zona glomerulosa. The primary 
representative of MCS is aldosterone, whose synthesis 
and secretion are controlled by the renin-angioten-
sin-aldosterone system (RAAS). MCS is essential for 
regulating adequate levels of sodium and potassium, 
as well as the proper volume of extracellular fluids. 
RAAS may also play a role in the development of insulin 
resistance, hepatosteatosis, and hepatofibrosis, possibly 
due to the influence of aldosterone and angiotensin II, 
which, through the nucleotide-binding oligomerisation 
domain-like receptor family pyrin domain-containing 3 
inflammatory vesicle-associated pathways, can stimu-
late hepatic stellate cells, promoting their differentiation 
into myofibroblasts and the accumulation of collagen 
and protein in the extracellular matrix; another pos-
sible mechanism for RAAS-dependent insulin resistance 
involves enhancing the degradation of the insulin 
receptor substrates IRS-1 and IRS-2 through a pro-
cess mediated by reactive oxygen species and boosting 
the mRNA expression of enzymes involved in glyco-
gen synthesis [82, 95–99]. Several human studies have 
shown a connection between aldosterone and fatty 
liver disease. The Jackson Hearth Study demonstrated 
that each doubling of aldosterone was correlated with 
a 1.08 Hounsfield unit reduction in computed tomogra-
phy scan, which was equivalent to a significant link with 
liver steatosis [100]. The study by Hu et al. revealed that 
the risk of fatty liver disease rose 1.04- and 1.24-fold for 
every 1 ng/dL and 5 ng/dL rise in plasma aldosterone 
concentration; moreover, they observed a substantial 
increase in the risk of developing new-onset NAFLD 
when aldosterone levels were ≥ 13 ng/dL [97]. Zheji-
ang University researchers also discovered a greater 
occurrence of hepatic steatosis in primary hyperaldo-
steronism; however, they also observed that individuals 
with hypokalaemia had a much worse metabolic status 
compared to patients with normokalaemia, confirming 
findings from Italian scientists a decade earlier [101, 
102]. The effects were also noticed in patients who ap-
ply RAAS blocking medications, such as for the treat-
ment of hormone-independent arterial hypertension 
— the use of eplerenone, finerenone, spironolactone, 
losartan, or telmisartan (which suppresses the activity 
of RAAS) had a beneficial effect on hepatic steatosis, 
inflammation, and fibrosis in several studies [103–108]. 
Telmisartan is noteworthy for its dual action of block-
ing the angiotensin II receptor and acting as a selective 
PPARγ modulator, which leads to therapeutic advantag-

es by modulating PPARγ in lipid and glucose metabolism 
without the adverse effects seen with traditional PPARγ 
activators, such as fluid retention, weight gain, or swell-
ing [109]. A randomised controlled trial involving 23 
patients with MAFLD showed that those treated with 
spironolactone and vitamin E experienced improve-
ments in steatosis and insulin resistance compared 
to those treated with vitamin E alone [110]. A territo-
ry-wide cohort research from China demonstrated that 
treatment with angiotensin-converting enzyme inhibi-
tors is linked to a reduced risk of liver-related events in 
patients with NAFLD, defined as a composite endpoint 
of liver cancer and cirrhosis complications. Research 
findings and our understanding of pathophysiology 
suggest that aldosterone, particularly primary hy-
peraldosteronism, significantly influences the onset 
and advancement of hepatic steatosis and its associated 
consequences; however, we must also consider the ad-
ditional effects of disorders that are associated with or 
caused by elevated levels of aldosterone.

Androgens are also significant hormones that 
the adrenal cortex secretes in the context of MAFLD. 
Dehydroepiandrosterone (DHEA) and its sulphated 
form, DHEAS, are the primary adrenal androgens stud-
ied in relation to the development of MAFLD. DHEA 
and DHEAS play crucial roles in oxidative stress, insulin 
sensitivity, lipid metabolism, and collagen formation 
— the beneficial effect of DHEA and DHEAS on the fea-
tures of metabolic syndromes such as diabetes, obesity, 
atherosclerosis, and others, may also have consequences 
for the development of MAFLD [9, 111]. DHEA has 
been shown to protect against fatty liver disease by 
enhancing insulin sensitivity (through the activation of 
peroxisome proliferator-activated receptor alpha), pro-
tecting hepatocytes from damage caused by oxidative 
stress (by reducing malondialdehyde levels, enhancing 
superoxide dismutase activity, and increasing glutathi-
one levels) and inflammation (due to the limitation of 
the activity of tumour necrosis factor alpha, IL-1, IL-6, 
and IL-10) — additionally, DHEA inhibits the produc-
tion of procollagen type 1, a precursor to collagen as-
sociated with hepatofibrosis development [112–115]. 
Moreover, DHEA suppresses the activity of 11b-HSD1 in 
adipose tissue, leading to decreased cortisol production 
locally, which has a protective effect against the devel-
opment of metabolic syndrome symptoms, as discussed 
in the section on GCS [9, 116, 117]. Importantly, how-
ever, human studies in this aspect are contradictory; 
some indicate a significant link between low levels of 
DHEA and DHEAS and fatty liver disease, particularly 
in its severe stages like steatohepatitis, hepatofibrosis, 
and cirrhosis [118–122] — conversely, other studies 
suggest that elevated levels of androgens are connected 
to hepatosteatosis [123–125]. A meta-analysis by Zhang 
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et al. revealed that DHEA levels were linked to hepat-
osteatosis in the basic model, but this association disap-
peared after adjusting for cardiometabolic risk factors 
— for women, there was no connection found between 
DHEA or DHEAS and NAFLD in any of the models 
[126]. Therefore, the possibility that the effect of DHEA 
and DHEAS concentrations on liver steatosis and fi-
brosis, despite the highly probable pathophysiological 
premises mentioned above, overlaps with the effect of 
other metabolic disorders of cardiovascular importance 
becomes justified. The authors of the meta-analysis not-
ed that the limited number of studies in this field may 
lead to more definitive results in the future.

When examining the involvement of adrenal glands 
in hepatosteatosis development, it is important to 
also take into account the potential influence of cat-
echolamines produced by both the chromaffin cells of 
the adrenal medulla and the postganglionic fibres of 
the sympathetic nervous system. MAFLD becomes more 
common as individuals age, marked by a rise in 
b-adrenergic receptor activity and resulting lipid accu-
mulation in liver cells. Research using a mouse model 
demonstrated that the extended use of the b2-agonist 
formoterol leads to an increase in hepatic lipid content. 
Patients with metabolic syndrome show elevated liver 
triglycerides and lipid droplet contents due to height-
ened sympathetic activity from catecholamines, which 
is also associated with upregulated expression of genes 
related to fatty acid uptake (CD36) and de novo lipogen-
esis (DGAT1 and DGAT2) [127–132]. Sigala et al. demon-
strated that human primary hepatic stellate cells rely on 
catecholamines for their survival and fibrogenic effects 
— they observed heightened regulation of the fibrogenic 
a/b-adrenergic receptor and neuropeptide Y receptors in 
patients with MAFLD, MASH, and cirrhosis, indicating 
the potential use of adrenoreceptor and neuropeptide 
Y antagonists in treating patients with MAFLD [133]. 
Adori et al. propose that persistent overstimulation of 
the sympathetic nervous system is a crucial element in 
the deterioration of liver tissue leading to hepatofibrosis. 
However, additional research is needed in this field. At 
this point, it seems justified to consider the influence 
of catecholamines on the development of MAFLD 
and MASH as potentially probable [134].

Liver steatosis, oestrogens, and androgens 
in women

Oestrogens in women play a protective role against he-
patic fat accumulation and fibrosis by promoting li-
polysis and reducing lipogenesis, mostly via boosting 
the phosphorylation of acetyl coenzyme-A carboxylase 
through a pathway mediated by oestrogen receptor a, 
which in turn reduces the production of reactive 

oxygen species and acts against inflammatory reac-
tions [135–137]. Menopause is a physiological state of 
oestrogen deficiency in which, along with the dura-
tion of the deficiency of these sex hormones, the risk 
of development and progression of MAFLD increases 
significantly — it is advisable to consider both meno-
pausal status and the age of the last menstrual period 
when evaluating the risk of hepatofibrosis in women 
with MAFLD [138–140]. Oestrogen deficiency after 
oophorectomy results in higher liver fat accumulation 
and the development of insulin resistance - oestrogen 
therapy, like in menopause, can help restore the cor-
rect phenotype and decrease intrahepatic triglyceride 
levels [141–145]. On the other hand, in a comprehensive 
study of women with MAFLD features, the use of con-
traceptives in pre-menopausal women and hormone 
replacement therapy in post-menopausal women was 
associated with a higher risk of severe lobular inflam-
mation, regardless of age, body mass index, and insulin 
resistance; however, further analysis revealed that 
the risk of severe lobular inflammation was specifically 
linked to progesterone, not oestrogen [146]. Female 
patients with breast cancer undergoing tamoxifen 
and toremifene treatment (selective oestrogen recep-
tor modulators: SERM, which act antiestrogenically) 
exhibited a greater incidence of excessive intraabdomi-
nal fat accumulation and MAFLD, independently of 
body mass index [147–150]. Fortunately, although 
these medicines have many severe negative effects, 
the progression of MAFLD to MASH and cirrhosis is 
rarely seen [148, 151, 152]. 

Elevated androgen levels in women can lead 
to an increased risk of hepatosteatosis by nega-
tively impacting lipid metabolism, insulin sensitivity, 
and the expansion of visceral fat tissue. Androgens 
can lead to hepatosteatosis by prolonging the half-life 
of low-density lipoprotein (LDL) and very low-density 
lipoprotein (VLDL) through inhibiting LDL-receptor 
expression — compared to PCOS women with normal 
androgen levels, those with elevated androgens ex-
hibited higher levels of LDL, triglycerides, and values 
for the HOMA-IR [153, 154]. Testosterone (specifically 
in women) also can enhance the expression of genes 
that influence de novo lipogenesis in human liver 
cells. It has also been noticed that hyperandrogenism 
in women negatively impacts angiogenesis in ovarian 
tissue, perhaps exacerbating preexisting polycystic 
ovary syndrome (PCOS) [155] — interestingly, Ku-
marendran et al. discovered that serum  testosterone 
levels > 3.0 nmol/L were associated with a higher risk 
of NAFLD in women with PCOS [156]. We mention 
PCOS because this is an androgen-dependent disease 
that is considered the most common cause of anovu-
latory infertility and a risk factor for cardiometabolic 
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complications — women with this condition experience 
various symptoms, including additional metabolic (dys-
lipidaemia, hypertension, obesity, hyperinsulinaemia, 
and insulin resistance) and psychological issues. In their 
2023 meta-analysis, Yao et al. definitively showed that 
women with PCOS had a 2.6–3.0 times greater likeli-
hood of acquiring liver steatosis linked to metabolic 
dysfunctions [157].

Hyperandrogenaemia (with PCOS as the main 
representative, in its classic or ovulatory phenotype) 
and hypogonadism in women are closely linked to 
an increased risk of developing MAFLD, primarily 
because of concomitant insulin resistance features. It 
is justified to actively monitor these individuals using 
abdominal ultrasound to confirm or exclude hepatos-
teatosis and to pay particular attention to serum liver 
enzymes in laboratory data.

Liver steatosis and sex hormones in males

Regarding men, the impact of sex hormones on liv-
er health appears to be inversely related compared to 
women, according to obviously another gender-specific 
definition of hypogonadism – men with low levels of 
androgens and high levels of oestrogens displayed 
signs of fatty liver disease. Research using an ani-
mal model showed that knockout of the 5a-reductase 
type 1 receptor and the androgen receptor combined 
with a high-fat diet leads to the development of hepa-
tosteatosis and carbohydrate metabolism disorders, 
and accelerates body weight gain — male mice exhib-
ited reduced testicular volume, decreased testosterone 
levels, and compromised reproductive function [93, 158, 
159]. Testosterone deficiency can contribute to insulin 
resistance and triglyceride accumulation in the liver; 
this effect can be reversed by reducing hepatic lipo-
genesis, increasing the oxidation of fatty acids and their 
export from the liver, suppressing inflammatory pro-
cesses within the liver, and influencing the expression 
of genes involved in glucolipid metabolism through 
epigenetic mechanisms [160–164]. Treating orchidec-
tomised rats with dihydrotestosterone reduced lipid 
accumulation and cholesterol synthesis in the liver by 
upregulating carnitine palmitotyltransferase1 expres-
sion and 3-hydroxy-3-methyl-glutarylCoA reductase 
phosphorylation through an androgen receptor-me-
diated pathway [135]. Analysing available human 
studies, it was observed that a study by Barbonetti et 
al. revealed a correlation between total and free tes-
tosterone levels and the likelihood of having MAFLD 
— the risk increased by 3% for every 1 pg/mL fall in 
free testosterone concentration [165]. A study involv-
ing more than 380,000 individuals with proven prostate 
cancer found that older men on antiandrogen therapy 

were at a higher risk of being diagnosed with various 
liver illnesses such as hepatosteatosis, hepatofibrosis, 
and cirrhosis [125]. Patients diagnosed with hypo-
gonadism, who received hormonal treatment with 
testosterone undecanoate for one year, experienced 
a notable decrease in visceral fat volume and saw 
improvements in inflammatory marker levels [166]. 
Obviously, we must remember about the bidirectional 
relationship between metabolic syndrome and andro-
gens because decreased testosterone and its byprod-
ucts may be intimately linked and secondary to obesity 
or glucose-lipid disorders, and not necessarily the other 
way around — for example, imbalanced leptin levels as-
sociated with obesity lead to elevated oestrogen levels, 
which subsequently enhance aromatase activity, which 
in turn reciprocally suppresses testosterone levels 
and the hypothalamic-pituitary-gonadal axis (in such 
a situation, the targeted first-line treatment should be 
focused on obesity, not hypogonadism) [167–169]. One 
such possibility is, in addition to changing the lifestyle 
of an obese patient, implementing treatment with 
GLP-1 analogues (for example, semaglutide in a dose 
appropriate to the clinical situation), in which the pos-
sibility of improving androgen levels while maintain-
ing high safety of therapy has been confirmed [170].

The interpenetration of the features of the meta-
bolic syndrome and hypogonadism in men  should 
not prompt a revision of the guidelines for androgen 
replacement treatment in males based merely on the de-
tection of MAFLD. It is not recommended that screening 
tests be performed for hypogonadism in men in the case 
of a recent diagnosis of MAFLD without other accompa-
nying clinical symptoms (like fatigue, decreased libido, 
depressed mood [9]); however, in patients already 
diagnosed with hypogonadism, regardless of its cause, 
it is appropriate to perform ultrasound assessment of 
the liver and laboratory tests of liver enzymes to confirm 
or rule out the diagnosis of MAFLD.

Diagnosis, monitoring, and treatment 
of MAFLD

The diagnosis of MAFLD is based on the presence 
of hepatosteatosis, as previously discussed and illus-
trated in Figure 1. An abdominal ultrasound is the most 
accessible diagnostic for assessing liver health (a typi-
cal image of hepatosteatosis is bright liver echotexture 
and blurring of the hepatic vasculature), although 
it has low sensitivity when steatosis affects < 25–30% 
of hepatocytes [171]. A more sensitive metric is the con-
trolled attenuation parameter (CAP) performed during 
transient elastography, which allows the assessment of 
steatosis even when lipid droplets are present within 
5% of the liver tissue — the drawback of this technology 
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is its restricted availability [172]. If elastography is un-
available, ultrasonography is the preferred imaging tool 
for screening for fatty liver due to its low cost, safety, 
and accessibility in clinical and population settings. It 
is challenging to determine the speed at which fatty 
liver disease can develop due to the intricate nature of 
our metabolism, making it a multifactorial process that 
occurs gradually over time. Song et al. demonstrated in 
an animal model that expression of genes involved in 
de novo lipogenesis and the subsequent development 
of hepatosteatosis lasted from 22 to 38 weeks [173]. 
While not directly applicable to a human model, this 
suggestion remains important in indicating the frequen-
cy of monitoring liver steatosis progression and related 
repercussions. MAFLD encompasses of progressive 
stages of liver disease, beginning with simple steatosis 
and progressing through MASH, fibrosis, cirrhosis, 
and hepatocellular carcinoma. Danish researchers 
determined that the median time for fatty liver rear-
rangement in MASH and hepatofibrosis (and possible 
further stages) is 25 months, but according to long-term 
follow-up studies, progression usually takes 8 to 13 
years [174–177]. The gold standard for diagnosing hepa-
tofibrosis is a core needle biopsy of the liver, which is 
invasive. Due to the common occurrence of MAFLD, 
non-invasive indicators are typically utilised for screen-
ing liver fibrosis. Table 1 displays the most frequently 
used non-invasive hepatofibrosis markers in clinical 
practice [178–185]. As to the guidelines of the American 

Association for the Study of Liver Diseases (AASLD), it 
is recommended that all patients with hepatic steatosis 
or suspected MAFLD undergo primary risk assessment 
(in the opinion of the AASLD, the preferred method 
for this evaluation is FIB-4) — it is suggested to reas-
sess the liver fibrosis risk every 1–2 years [181, 186]. 
The authors of this manuscript have analysed available 
guidelines and information and have formulated their 
own recommendations regarding the monitoring of 
liver steatosis and fibrosis development in endocrine 
disorders (categorised into diseases with a possible, 
strong, and clearly related relationship with the devel-
opment of MAFLD), which are presented in Table 2. 
While additional confirmation is necessary, we believe 
that these findings offer a solid foundation for easily 
integrating suitable habits into routine clinical practice.

Treatment of MAFLD is a complex issue. Besides 
offering therapy for the cause, it is imperative to up-
hold a nutritious and balanced diet as well as engage 
in regular physical activity, because these factors 
greatly contribute to improving cardiometabolic health. 
An effective nutritional intervention can be seen in 
the implementation of the Mediterranean diet, which 
improves metabolic state due to its influence on insulin 
resistance [187–190]. On the other hand, some scien-
tific groups state that there is insufficient evidence to 
endorse any particular dietary intervention, as long 
as the meals are properly balanced in terms of micro- 
and macronutrients [191]. There is evidence indicating 

Figure 1. Diagnostic criteria for metabolic-associated fatty liver disease (MAFLD). BMI — body mass index; HDL — high-density 
lipoprotein; HbA1c — glycated haemoglobin; HOMA-IR — homeostasis model assessment of insulin resistance; 

Hepatis steatosis
(detected by imaging techniques, blood biomarkers/scores or by liver histology)

Overweight or obesity
(BMI ≥ 25 kg/m² in Caucasians
or BMI ≥ 23 kg/m² in Asians)

Lean or normal BMI

MAFLD

If presence of at least 2 metabolic risk abnormalities:
• waist circumference ≥ 102/88 cm in Caucasian men and women (or ≥ 90/80 cm in Asian men and women)
• blood pressure ≥ 130/85 mm Hg or specific drug treatment
• plasma triglycerides ≥ 150 mg/dL or specific drug treatment
• plasma HDL-cholesterol < 40 mg/dL for men and < 50 mg/dL for women or specific drug treatment
• prediabetes (fasting glucose levels 100–125 mg/dL or 2-hour post-load glucose levels 140–199 mg/dL) or HbA1c 5.7–6.4%
• HOMA-IR ≥ 2.5
• plasma high-sensitivity C-reactive protein level > 2 mg/L

Type 2 diabetes mellitus
(according to widely accepted

international criteria)
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that nutritional intervention may have greater effects 
in patients with specific genetic polymorphisms (es-
pecially PNPLA3-rs738409) [192, 193]. Physical activity 
is an equally important element of MAFLD therapy 
— it is recommended to engage in regular exercise at 
a moderate intensity, at least 5 times a week, for a to-
tal of 150 minutes per week, or increase their activity 
level by more than 60 minutes per week compared to 
the previous week - this is important in order to pre-
vent the development of liver steatosis and its associ-
ated complications related to the fibrosis process [186, 
194–196]. In terms of pharmacotherapy, currently no 
drugs have been officially approved for the treatment of 
MAFLD or MASH. However, based on the understand-
ing of the underlying mechanisms of these disorders, 

the literature often suggests co-treatment options such 
as vitamin E, pioglitazone, GLP-1 analogues (liraglutide, 
semaglutide), SGLT-2 inhibitors, or dual GLP-1/GIP 
agonists (tirzepatide) [186]. Additional observations 
and study findings are unquestionably required, espe-
cially in groups of patients with the above-mentioned 
endocrine diseases.

Conclusions

Given the high incidence of fatty liver disease in 
the population of patients with endocrine disorders, 
it is imperative to comprehend its aetiology to offer 
improved management for these patients. This concise 
overview emphasises the strong possible connections 

Table 1. The most frequently used non-invasive hepatofibrosis markers in clinical practice

Non-invasive serum test Formula or components of test

APRI [178] 100 × (AST [U/L]/upper limit of normal AST)/platelet count [109/L]

BARD [179] Weighted sum of: BMI ≥ 28 = 1 point; AST/ALT ≥ 0.8 = 2 points; presence of diabetes = 1 point

FIB-4 [181] (age [years] × AST [U/L])/(platelet count [109/L [× ALT1/2)

NFS [182] −1.675 + 0.037 × age [years] + 0.094 × BMI [kg/m2] + 1.13 × IFG/diabetes 
[yes = 1, no = 0] + 0.99 × AST/ALT ratio − 0.013 × platelet [×109/L] − 0.66 × albumin [g/dL]

Fibrometer NAFLD [184] 0.4184 glucose [mmol/L] + 0.0701 AST [U/L] + 0.0008 ferritin [ug/L] − 0.0102 platelet [109/L] 0.0260 ALT 
[U/L] + 0.0459 body weight [kg] + 0.0842 age [years] + 11.6226

ELF [183] Age, hyaluronic acid, amino-terminal propeptide of type III collagen, tissue inhibitor of metalloproteinase 1

LFRI [185] Age, hyaluronic acid, amino-terminal propeptide of type III collagen, collagen type IV, laminin

AST — aspartate transaminase; BMI — body mass index; ALT — alanine aminotransferase; IFG — impaired fasting glucose

Table 2. Authors’ recommendations about monitoring liver steatosis and fibrosis development in the course of endocrine disorders

Endocrine disorders 
possibly related to 
the etiopathogenesis 
of liver steatosis

Acromegaly

Hyper- and hypoprolactinemia

Pheochromocytoma/paraganglioma

Vitamin D deficiency

The authors suggest periodic ultrasound abdominal examinations (or transient 
elastography) and assessing the risk of hepatofibrosis (with the use of 
non-invasive markers) during the care of patients with endocrine disorders 
possible related to the aetiopathogenesis of liver steatosis, especially:

•	 after diagnosis;
•	 when any signs of metabolic syndrome are present.

Endocrine 
disorders with 
a potentially strong 
relationship with 
the etiopathogenesis 
of liver steatosis

GH deficiency

Hypothyroidism

Hypercortisolaemia

Primary hyperaldosteronism

Hypogonadism

PCOS

The authors suggest periodic ultrasound abdominal examinations (or transient 
elastography) and assessing the risk of hepatofibrosis (with the use of 
non-invasive markers) during the care of patients with endocrine disorders with 
a potentially strong relationship with the etiopathogenesis of liver steatosis, 
especially: 

•	 after diagnosis;
•	 when any signs of metabolic syndrome are present;
•	 at least once every 2 years, if no troubling symptoms are present.

Endocrine disorders 
clearly related to 
the etiopathogenesis 
of liver steatosis

Overweight and obesity

Type 2 diabetes mellitus 
and prediabetes states

The authors suggest periodic ultrasound abdominal examinations (or transient 
elastography) and assessing the risk of hepatofibrosis (with the use of 
non-invasive markers) during the care of patients with endocrine disorders clearly 
related to the etiopathogenesis of liver steatosis (constituting the criteria for 
MAFLD diagnosis), especially:

•	 after diagnosis
•	 at least once every year, if no troubling symptoms or any other signs 

of metabolic syndrome are present.

GH — growth hormone; PCOS — polycystic ovary syndrome; MAFLD — metabolic-associated fatty liver disease
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between hormones and MAFLD, specifically focus-
ing on growth hormone deficiency, hypothyroidism, 
hypercortisolaemia, primary hyperaldosteronism, 
and hypogonadism. The authors also proposed simple 
recommendations for monitoring individuals with 
particular endocrine disorders to detect the potential 
development of hepatosteatosis and hepatofibrosis. 
MAFLD is a complex metabolic disease, and although 
its pathogenesis and pathophysiology still raise doubts 
and generate questions, it is important to keep this 
condition in mind during routine clinical practice, 
particularly in the field of endocrinology.
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