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Furthermore, long-standing GHD increases the risk 
of cardiovascular complications related to over-
weight or obesity, lipid disorders, insulin resistance, 
and alterations in adipokine profile and serum ghre-
lin levels. According to recent studies, GH/IGF1 may 
play a crucial role in regulating the secretion of 
adipokines and ghrelin [5–19]. However, the results 
are conflicting: some studies report increased serum 
leptin and adiponectin levels [13, 14, 20], while oth-
ers found reduced leptin [15, 21] and no influence on 
adiponectin serum levels [15]. Ghrelin stimulates GH 
secretion, increases food intake, and generates weight 
gain [15, 22]. The primary metabolic effects are exerted 
by acylated ghrelin (AG), while plasma unacylated 
ghrelin (UAG) may inhibit ghrelin and be involved 
in critical endocrine processes [14, 23]. Ghrelin cor-

Introduction

Linear growth can be affected by numerous factors, in-
cluding nutrition, genetics, metabolism, and hormones. 
Growth hormone (GH)/insulin-like growth factor 1 (IGF1) 
axis, calcium-phosphorus homeostasis, and bone-kidney 
endocrine system mediated by the novel phosphatu-
ric hormone fibroblast growth factor 23 (FGF23) play 
critical roles in appropriate bone and growth plate miner-
alisation [1–3]. Children with growth hormone deficiency 
(GHD) have a smaller stature and reduced longitudinal 
bone growth [4], an altered body composition and meta-
bolic profile, with a lower bone mineral density (BMD) 
and delayed skeletal maturation, an increased percentage 
of body fat (%BF) with central fat deposition, and ac-
companying lean mass reduction [3–7].
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Abstract 
Introduction: Beyond growth acceleration, growth hormone (GH) therapy improves body composition of GH-deficient (GHD) children due 
to the interaction of GH with lipid and carbohydrate metabolism, possibly mediated by adipokines secreted by adipose tissue and ghrelin. 
To promote linear growth, it is essential to have normal phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is a known regulator 
of serum phosphorus and may be responsible for the increased renal phosphorus reabsorption observed during GH therapy. This study 
aimed to assess the impact of one-year GH therapy on body composition, adipokines, acylated/unacylated ghrelin (AG/UAG), and FGF23 
in GHD children.
Material and methods: A prospective observational study of 42 prepubertal, non-obese GHD children followed up in the first year of GH 
replacement therapy, investigating changes in adipokine profiles, AG/UAG, FGF23, and body composition. Data before therapy onset 
were compared with measurements obtained after 6 and 12 months of GH therapy.
Results: All children with a mean age of 9.2 ± 2.6 years grew at an accelerated pace. Total body fat decreased significantly, while the lipid 
profile improved, and total bone mineral density (BMD) significantly increased over the 12 months of treatment. Leptin and UAG levels 
decreased significantly, whereas adiponectin and AG values increased. A significant increase in plasma FGF23 and insulin growth factor 1 
(IGF1) was accompanied by increased serum phosphate. Changes in FGF23 concentration did not have an impact on BMD. The strong as-
sociation of FGF23 with IGF1 and height standard deviation (SD) could reveal a role of FGF23 in linear growth. In regression analysis models, 
GH therapy influences the changes of leptin and adiponectin, but not ghrelin, independently of body composition — lean or fat mass. 
Conclusions: GH replacement therapy improves body composition and adipokine profile in GHD children and directly impacts leptin 
and adiponectin concentrations independently of body composition. Also, GHD children have increased serum phosphate, correlated 
with upregulation rather than with suppression of FGF23, an unexpected observation given the phosphaturic role of FGF23. Further 
research is needed to identify the molecular mechanisms by which the GH/IGF1 axis influences adipokines secretion and plasma 
changes of FGF23. 
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hormonal, and radiological assessments. Key criteria 
include height less than –2.5 SDS from the mean, or 
a significant height deficit over time or compared to 
genetic potential; bone age delayed by over 2 years; 
failure of 2 GH stimulation tests or one failed test plus 
low serum IGF1 and a maximum GH peak of 7 ng/mL 
in 2 GH provocation tests [30]. Other potential causes of 
short stature were ruled out. Magnetic resonance imag-
ing was performed and showed normal hypophysis in 
all subjects. Exclusion criteria included pubertal onset, 
overweight or obese status (> 85th percentile) [31], 
and other metabolic disorders or diseases. 

Blood sampling and biochemical analysis
During the initial visit, we recorded a detailed clini-
cal history and the patient’s age, sex, weight (kg), 
height (cm), BMI (weight/height2), and bone age. After 
a 12-hour fast, morning blood samples were collected 
and frozen at –45°C for analysis. Patients were evaluated 
for various factors at baseline, 6 months, and 12 months 
during rhGH replacement therapy, including serum 
IGF1 levels, insulin-like growth factor-binding protein 3 
(IGFBP3), AG and UAG, adiponectin, leptin, C-terminal 
FGF23, serum phosphorus, calcium, 25-OH-vitamin 
D, parathormone (PTH), glucose, glycosylated hae-
moglobin (HbA1c), insulin, cholesterol, triglycerides, 
and insulin resistance (HOMA-IR).

The concentrations of IGFBP3 were determined 
quantitatively using a ligand-binding immunoassay 
(LIA, Reutlingen, Germany). Serum levels of AG, 
UAG, leptin, and adiponectin were measured using 
ELISA (BioVendor, Brno, Czech Republic). Serum 
C-terminal FGF23 levels were analysed using an ELISA 
kit (SEA746Hu, USCN Life Sciences, Wuhan, China) 
that measured both active and inactive FGF23 ob-
tained after proteolytic cleavage of FGF23 in EDTA 
plasma centrifuged immediately after collection. Body 
composition was assessed using a Hologic QDR-4500 
densitometer and total body dual-energy X-ray absorp-
tiometry (DXA).

Statistical analysis
We used SPSS 24.0 to conduct a comparative study 
on monitored parameters. The results are presented 
as mean ± standard error of the mean (SEM), 
and ANOVA was used to compare 3 sets of values. 
Pearson correlation was used for normally distributed 
data, and Spearman’s rank correlation was used for 
skewed data to evaluate variable changes. Significant 
correlations were analysed through multiple regression 
to identify independent connections between variables. 
A threshold of p < 0.05 was considered statistically 
significant.

relates negatively with body mass index (BMI), %BF, 
fasting insulin, and leptin values [12, 15]. The effects 
of ghrelin in treated GHD patients are contradictory. 
Some studies have reported no effect or a significant 
decrease in ghrelin levels [15, 24, 25]. In contrast, one 
study reported elevated ghrelin in non-treated GHD 
children and decreased ghrelin with children’s age, 
suggesting the presence of GH-independent factors 
increasing ghrelin secretion [26].

Replacement therapy with recombinant human 
growth hormone (rhGH) was determined to modify 
body composition, decrease total body fat, improve 
lipid metabolism, and increase BMD in children with 
GHD, thus emphasising the crucial role of the GH/IGF1 
axis in adult body composition and BMD outcomes 
and the need for continuing replacement treatment 
during the transition from paediatric to adult age, 
despite the closure of epiphyseal growth plates [27]. 
Whether the metabolic impact is due to body compo-
sition modifications or direct GH influence is unclear 
[5–16]. The rhGH treatment normalises BMD, reducing 
osteoporotic fracture risk by modifying bone formation 
and resorption markers from the start of therapy [4, 27, 
28]. FGF23, mainly produced by osteocytes, regulates 
phosphorus metabolism and skeletal mineralisation. 
Studies have shown that GHD children have increased 
renal phosphorus reabsorption during replacement 
therapy, possibly due to FGF23 [2, 29].

This study aimed to evaluate the effects of rhGH 
replacement therapy on body composition and the rela-
tionship between the somatotropic axis and adipokines, 
ghrelin, and FGF23 in non-obese prepubertal children 
with GHD over a period of 12 months.

Material and methods

Subjects
This prospective, observational study consecutively 
sampled 42 non-obese prepubertal children (14 girls, 
28 boys) diagnosed with idiopathic GHD at our 
Endocrinology Clinic. The local Ethics Committee 
approved the study, and informed consent was ob-
tained before participation. The children had a mean 
age of 9.2 ± 2.6 years, with no significant differences 
between sexes (t = 1.860, p = 0.070). All subjects, after 
an initial evaluation of 7 days, started a 12-month 
course of GH replacement therapy (0.035 mg/kg/day) 
and were monitored at 6 and 12 months. The prepu-
bertal status (Tanner stage I) was maintained during 
observation. The diagnosis of GHD was confirmed 
using the national GH treatment protocol and criteria 
[30]. This involves children with confirmed GHD, 
requiring a combination of auxological, biochemical, 
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Results

Descriptive
Figures 1–4 present the baseline, 6-month, and 12-month 
analytical data. All children experienced accelerated 
growth, with an average increase of ~8 cm/12 months 
in height (∆SD height = 0.57 ± 0.24, ∆SD height veloc-
ity = 1.39 ± 1.53). Weight and BMI also exhibited steady 
and significant growth throughout the monitoring 
year, with ~4 kg and 0.6 units, respectively (as shown 
in Figure 1, upper panel, ∆SD BMI = 1.88 ± 0.43). Total 
body fat content and %BF decreased significantly over 
the study period, while lean mass increased steadily, 
with statistically significant differences among all 3 
evaluations (Fig. 1, lower panel). 

Leptin levels decreased significantly at 6 months 
(Fig. 2, upper panel), while AG and adiponectin in-
creased dramatically at 6 and 12 months compared to 
baseline. UAG decreased at 6 months and then slightly 
increased but remained significantly lower than base-
line (Fig. 2, lower panel). The AG/UAG ratio also varied 
considerably (Fig. 2, lower panel).

Total bone mineral density (BMD) and bone mineral 
content (BMC) significantly increased after 12 months 
of GH replacement therapy (Fig. 3, upper panel). How-
ever, the total calcium levels did not vary significantly 
during the monitored interval. All patients received 
supplementation with 25-(OH)-vitamin D and the in-
crease in serum vitamin D was accompanied by an in-
crease in serum phosphate levels and a substantial 
increase in plasma cFGF23 and IGF1 levels (as shown 
in Fig. 3, upper panel and lower panel, and Figure 1, 
middle panel).

Total and low-density lipoprotein (LDL) cholesterol 
significantly decreased after 12 months of GH replace-
ment, while high-density lipoprotein (HDL) cholesterol 
and triglycerides did not show significant variations 
during the monitored interval (shown in Fig. 4, upper 
panel). All parameters of glucose metabolism, although 
registering significant variations, fell within the normal 
range at the intermediate and final assessment (shown 
in Fig. 4, lower panel). The correlations between chang-
es in body composition, adipokines, ghrelin, and FGF23 
during GH replacement therapy at 6 and 12 months.

Figure 1. The changes of anthropometric, body composition, and somatotropic axis parameters. BMI — body mass index; 
IGF1 — insulin-like growth factor 1; IFGBP3 — insulin-like growth factor-binding protein 3; %BF — percentage of body fat. Asterisks 
— compared to mean initial value. Daggers — compared to the mean value at 6 months. One symbol — p < 0.05. Two symbols — p < 0.01

Height [cm] Weight [kg] BMI [kg/m²]

IGF1 [ng/mL]

Lean mass [kg]

IGFBP3 [ng/mL]

Fat mass [kg] % BF total
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After 12 months of therapy, we analysed the ef-
fect of GH therapy and body composition changes on 
adipokines, UAG, AG, and FGF23 levels by studying 
the dynamic correlations between variable variations 
(∆ = T12 – T0) (Tab. 1 and 2).

Changes in adiponectin and UAG were nega-
tively correlated with SD BMI, probably due to GH 
therapy-induced changes in adipose tissue (Tab. 1). GH 
therapy significantly increased lumbar, neck, and total 
BMD and BMC, improving lumbar Z-score. FGF23 
values correlated sporadically with body composition 

parameters at 6 and 12 months, while IGFBP3 showed 
significant direct proportionality with most parameters 
of body composition at all 3 time points (Tab. 2).

Regression models adjusted for insulin, cholesterol, 
and HOMA-IR showed significant correlations with 
∆leptin, ∆adiponectin, and ∆UAG as the dependent 
variables. GH treatment independently influenced 
the variation of leptin and adiponectin but not ghrelin; 
also, the effect of trunk fat variation was added for 
changes in leptin. IGF1 variation at 12 months cor-
related only with lean mass variation, which was not 

Figure 2. The effects of recombinant human growth hormone (rhGH) replacement therapy on adiponectin, leptin, acylated ghrelin (AG), 
and unacylated ghrelin (UAG). Asterisks — compared to mean initial value. Daggers — compared to the mean value at 6 months. 
One symbol — p < 0.05. Two symbols — p < 0.01

Adiponectin [ng/mL] Leptin [ng/mL]

AG [pg/mL] UAG [pg/mL] A/UAG

Figure 3. The effects of recombinant human growth hormone (rhGH) replacement therapy on calcium-phosphorus metabolism, fibroblast 
growth factor 23 (FGF23), and bone mineral density (BMD). Asterisks — compared to mean initial value. Daggers — compared to 
the mean value at 6 months. One symbol — p < 0.05. Two symbols — p < 0.01

Total BMD Total BMC 25 OH Vitamin D 
[ng/mL]

PO4 [mg/dL] Total calcium [mg/dL] FGF23 [pg/mL]
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Figure 4. The impact of recombinant human growth hormone (rhGH) replacement therapy on lipid and glucose metabolism. Asterisks 
— compared to mean initial value. Daggers — compared to the mean value at 6 months. One symbol — p < 0.05. Two symbols — p < 0.01. 
LDL — low-density lipoprotein; HDL — high-density lipoprotein; HbA1c — glycosylated haemoglobin; HOMA-IR — homeostasis model 
assessment of insulin resistance

Cholesterol [mg/dL]

Glucose [mg/dL]

LDL [mg/dL]

HbA1c (%)

HDL [mg/dL]

Insulin [µUI/mL]

Triglycerides [mg/dL]

HOMA-IR

Table 1. Correlations between changes in adipokines, ghrelin, insulin growth factor (IGF1) levels, and body composition 
parameters after 12 months of growth hormone (GH) therapy

∆Leptin [ng/mL] ∆Adiponectin [ng/mL] ∆UAG [pg/mL] ∆AG [pg/mL] ∆IGF1 [ng/mL] ∆SD_IGF1

∆IGF1 [ng/mL]

r 0.177 0.370* 0.220 –0.212 1 0.690*

p 0.262 0.016* 0.162 0.177 – < 0.001*

∆SD_IGF1 [ug/mL]

r 0.384* –0.007 0.078 –0.221 0.690* 1

p 0.012* 0.966 0.621 0.160 < 0.001* –

∆Total fat [g]

r 0.261 –0.136 –0.217 0.008 –0.043 0.244

p 0.096 0.391 0.168 0.958 0.786 0.120

∆Trunk fat [g]

r 0.554* –0.165 0.001 –0.166 0.101 0.297

p < 0.001* 0.297 0.994 0.294 0.525 0.056

∆Total lean [g]

r –0.087 0.289 0.316* –0.121 0.319* –0.211

p 0.586 0.063 0.041* 0.444 0.040* 0.090

∆Legs–arms fat [g]

r –0.096 –0.169 –0.293 0.155 –0.103 0.180

p 0.545 0.285 0.059 0.325 0.516 0.569

∆IGFBP3

r –0.226 0.012 0.049 –0.113 0.128 –0.032

p 0.150 0.941 0.760 0.477 0.419 0.842

Results are expressed as coefficients r and p; *significant correlations; UAG — unacylated ghrelin; AG — acylated ghrelin; IGFBP3 — insulin-like growth factor-binding 
protein 3; SD — standard deviation
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significantly associated with any of the adipokines. 
Therefore, the effect of IGF1 increment on the variation 
of adipokines was independent of body composition 
parameters - lean or fat mass (Tab. 3). At 12 months, 
only lean mass variation correlated with IGF1 varia-
tion, independent of adipokines and body composition 
parameters (Tab. 1 and 3).

Regression models were used to find significant 
correlations between serum levels of FGF23 and vari-
ous parameters, including age, sex, serum phosphate 
levels, 25 (OH) vitamin D, IGF1, and PTH. At 12 months, 

the most significant factors contributing to FGF23 
variations were SDS IGF1, total fat, IGFBP3, total BMD, 
and BMI (Tab. 3). We examined the correlation between 
FGF23 serum levels and BMD/BMC evolution. We used 
a multiple regression model to predict total BMD/BMC 
values based on independent variables, including 
25-OH-vitamin D, PTH, FGF23, calcium, and phospho-
rus. However, the FGF23 variable was statistically insig-
nificant and did not significantly impact the dependent 
variable, except for a small contribution to total BMC 
(coefficient –2.321) (Tab. 3).

Table 2. Correlations between changes in fibroblast growth factor 23 (FGF23), insulin growth factor 1 (IGF1)/insulin-like 
growth factor-binding protein 3 (IFGBP3), and body composition

FGF23 [pg/mL]  IGF1 [ng/mL] IGFBP3 [ug/mL]

Baseline 6 months 12 months Baseline 6 months 12 months Baseline 6 months 12 months

Height [cm]

r –0.077 0.214 0.328* 0.677* 0.613* 0.681* 0.615* 0.583* 0.546*

p 0.629 0.173 0.034* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

SDS Height

r –0.404* –0.106 0.019 0.409* 0.563* 0.513* 0.505* 0.683* 0.646*

p 0.008* 0.503 0.905 0.005* 0.000* 0.000* 0.000* 0.002* 0.000*

BMI [kg/m2]

r –0.057 0.156 0.216 0.429* 0.573* 0.516* 0.453* 0.471* 0.553*

p 0.722 0.323 0.169 0.005* 0.000* 0.000* 0.003* 0.002* 0.000*

∆Total fat [g]

r –0.208 0.092 –0.059 0.720* 0.462* 0.584* 0.609* 0.514* 0.487*

p 0.186 0.564 0.711 0.000* 0.002* 0.000* 0.000* 0.000* 0.001*

∆Total lean [g]

r –0.037 0.209 0.361* 0.555* 0.668* 0.637* 0.550* 0.555* 0.588*

p 0.817 0.185 0.019* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

BMC total [g]

r 0.016 0.325* 0.193 0.546* 0.434* 0.520* 0.622* 0.504* 0.440*

p 0.922 0.036* 0.221 0.000* 0.004* 0.000* 0.000* 0.001* 0.004*

Z–Score lumbar

r –0.242 –0.201 –0.390* –0.317* –0.436* –0.462* –0.280 –0.139 –0.106

p 0.123 0.201 0.011* 0.041* 0.004* 0.002* 0.073 0.380 0.503

BMD total [g/cm2]

r 0.147 0.450* 0.266 0.259 0.522* 0.398* 0.208 0.250 0.204

p 0.353 0.003* 0.089 0.098 0.000* 0.009* 0.186 0.110 0.195

BMD lumbar [g/cm2]

r 0.066 0.271 0.364* 0.533* 0.562* 0.661* 0.432* 0.435* 0.518*

p 0.678 0.082 0.018* 0.000* 0.000* 0.000* 0.004* 0.004* 0.000*

BMD neck [g/cm2]

r –0.103 0.178 0.298 0.182 0.419* 0.434* 0.214 0.331* 0.418*

p 0.517 0.258 0.055 0.249 0.006* 0.004* 0.174 0.032* 0.006*

Results are expressed as coefficient r and p; *significant correlations; BMI — body mass index; BMC— bone mineral content; BMD — bone mineral density; 
FGF23 — fibroblast growth factor 23; IGF1 — insulin-like growth factor 1; IFGBP3 — insulin-like growth factor-binding protein 3
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Discussion

In addition to promoting linear growth, GH has vari-
ous metabolic effects, influencing body composition, 
muscle mass, adipose and osseous tissues, and lipid 
and glucose homeostasis. The GH/IGF1 axis positively 
affects bone formation through direct interaction with 
osteoblasts receptors and locally produced skeletal IGF1 
[3, 4, 27, 28]. Research on FGF23 and phosphate homeo-
stasis disorders has revealed a bone-kidney axis that 
regulates bone mineralisation, which is essential for 
proper growth. At the same time, achieving and main-
taining normal peak bone mass during childhood 
and adolescence is crucial to prevent osteoporosis later 
in life. Normal linear growth depends on the integrity of 
the FGF23 axis, which is evident in hypophosphataemic 
rickets — a genetic disorder characterised by an excess 
FGF23, leading to impaired linear growth [32].

GH induces whole-body lipolysis, mainly in the fast-
ing state, a physiological mechanism to provide energy 
from fat depots [8, 33–35]. GH therapy can gradually 
improve body composition and metabolic parameters 
in GHD children by reducing total fat mass and %BF 
while increasing total lean mass [36, 37]. Indeed, in our 
study, we observed a decrease in total fat mass and %BF 
and an increase in total lean mass in GHD children 
after GH therapy. We observed a significant increase 
in BMI, which differs from the findings of similar 
studies. The research conducted by Giavoli et al. [38] 
showed a marked decrease in BMI after 12 months of 
GH treatment, while other authors did not notice any 
significant change [5]. To exclude or limit the influence 
of puberty and obesity on body composition param-
eters, insulin action, and adipokines secretion [12–14], 
we only included pre-pubertal (Tanner stage 1) patients 
with an initial normal body weight (BMI < p85) [31]. 
The prevalent gain in lean mass among our non-obese 
patients might have contributed to increased BMI. 
Similarly to other research [5, 6, 37], our study confirms 
the positive effects of GH replacement therapy on lipid 
parameters in GHD children. Specifically, total choles-
terol and LDL levels decreased significantly during 
the follow-up period. 

It was previously believed that adipose tissue had 
no endocrine function. But it is now known to play 
a vital role in regulating metabolism and affect hor-
monal changes during puberty through adipokines 
produced by fat cells, such as leptin and adiponectin 
[11, 12, 34, 37]. When adipokine secretion is altered 
in patients with GHD, it can lead to changes in lipid 
and carbohydrate levels and fat tissue accumulation 
[13]. Treatment with daily rhGH administration can 
correct the somatotropic axis and normalise IGF1 
levels, improving the metabolic profile and reducing 

cardiovascular risk by directly and/or indirectly affect-
ing adipokines and ghrelin secretion [5, 13, 15]. In our 
study, levels of leptin and UAG decreased significantly 
after GH treatment, while adiponectin and AG values 
increased. This suggests a direct or indirect influence of 
rhGH therapy. Several studies have described similar 
variations in adiponectin and leptin levels [6, 20–23, 39]. 
However, some studies have reported no significant 
impact on adiponectin levels after initiating treatment 
or increased leptin concentrations in a small group of 
GHD children following treatment [5, 13].

Leptin is a type of adipokine positively linked to 
the total amount of fat in the body [20, 33, 35, 39]. Dur-
ing GH therapy, there is often a significant decrease in 
fat mass and percentage, and an increase in lean mass. 
Other studies [15–23, 39] reported that this can de-
crease leptin levels. Our study found that even though 
our patients had a normal weight at the start of treat-
ment, there was a significant decrease in their fat mass, 
which may have contributed to the decrease in circulat-
ing leptin. Before treatment and during the 12-month 
follow-up, leptin was positively correlated with fat mass, 
with the strongest correlation being changes in trunk fat. 
However, it is also possible that somatotropic hormones 
directly affect leptin secretion independent of adipose 
tissue. In children and adults with GHD, the level of 
leptin increases as adipose tissue increases [20, 21, 39]. 
Our study also found that changes in IGF1 levels inde-
pendently predicted changes in leptin levels, along with 
the expected correlation with fat mass. 

GHD children typically exhibit higher BMI 
and %BF than the general population. This is often 
linked to decreased adiponectin concentrations [33], 
associated with an elevated risk of atherosclerosis [21]. 
While some studies have failed to detect significant dif-
ferences in adiponectin levels between GHD subjects 
and control groups following GH therapy [14], other 
authors have observed increased adiponectin levels, 
particularly among females [25]. Such an increase may 
be considered a cardiovascular benefit of GH therapy, 
especially given its inverse relationship to risk factors 
such as blood glucose and triglycerides [20]. Our study 
found that changes in IGF1 levels were the only in-
dependent predictor of adiponectin variations, while 
variations in body composition components did not 
significantly influence adiponectin secretion. This 
suggests that the increase in adiponectin is related 
to direct GH effects rather than changes in body 
composition.

In our study, we found that rhGH therapy did 
not have a significant impact on ghrelin levels, accord-
ing to our regression analysis. However, we did notice 
a decrease in UAG concentrations, which we believe is 
related to the increase in insulin following GH replace-
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ment therapy [12]. While other studies have reported 
conflicting results, varying from a marked increase in 
AG levels to a decrease in total ghrelin or the absence 
of any significant variation [15, 14, 24, 25], none have 
investigated both forms of ghrelin simultaneously. Our 
research demonstrates that AG increases and UAG 
decreases in GHD children who undergo GH therapy. 
The mechanism underlying these opposing effects of 
rhGH on AG and UAG is not yet clear, as IGF1 did not 
correlate with the ghrelin modifications in our study. 
However, a direct stimulating effect of the therapeutic 
rise in IGF1 upon ghrelin secretion was previously de-
scribed [41]. One possible explanation is that GH ther-
apy has multiple metabolic consequences, which may 
explain the contradictory findings. Therefore, ghrelin 
acylation may be mainly increased during metabolic 
changes during GH therapy, such as increased insulin 
secretion, age, or BMI [12].

Only a few studies [2, 29, 42] have identified 
a connection between the GH/IGF1 and FGF23/Klotho 
axis. Our research is at the forefront of investigating 
the relationship between FGF23 and bone parameters 
in children with GHD. In our research, there is an in-
crease in serum phosphate and phosphaturic FGF23 
levels during GH therapy, probably due to a rise in 
renal phosphate tubular reabsorption. Similar find-
ings have been reported in studies involving children 
and adults with GHD who underwent GH substitu-
tion therapy [42, 43]. Some may assume that the sup-
pression of the FGF23 is the cause of the increase in 
serum phosphate levels in relation to the GH/IGF1 
axis. However, our data and other studies [2, 29, 42] 
suggest that the rise in serum phosphate due to GH 
is not caused by suppressing the phosphaturic FGF23 
system. Our findings align with 2 other studies. One 
solely examined plasma cFGF23 levels and found 
a comparable rise in cFGF23, suggesting GH’s effect 
is not dosage dependent. The level of cFGF23 tended 
to increase, even after adjusting for age, gender, total 
calcium, and phosphorus [29]. This rise in FGF23 may be 
a side effect of GH therapy. Efthymiadou et al. [2] had 
a more comprehensive approach, measuring cFGF23, 
iFGF23, and klotho, but found similar results for FGF23 
variations during GH treatment. Our research supports 
the findings of previous studies that there is a cor-
relation between SDS height and IGF1 and a strong 
association between SDS height and FGF23 levels 
[2], which was observed in healthy children as well 
[1]. This highlights the importance of phosphate ho-
meostasis for proper growth and mineralisation of 
the growth plate and emphasises the significance of 
an intact FGF23/klotho axis. Our findings suggest that 
the positive relationship between FGF23, height SDS, 
and IGF1 is probably due to the influence of FGF23 

on linear growth. There may be a connection between 
FGF23 and body composition, particularly with BMD 
and BMC. This suggests that the FGF23 system may 
directly impact maintaining healthy bones. 

Conclusion

GHD children experience metabolic abnormalities, 
which may be related to changes in body composition 
and altered levels of hormones such as leptin, adiponec-
tin, ghrelin, and FGF23. Our research has shown that 
even normal-weight children with GHD experience 
a significant decrease in body fat after 12 months of 
treatment. This beneficial modification is accompanied 
by an increase in adiponectin and AG levels but a de-
crease in leptin and UAG levels and an improved BMD. 
These improvements can have a positive and long-term 
effect on the child’s metabolism, and cardiovascular 
and bone health. Additionally, IGF1, in response to 
GH therapy, directly impacts leptin and adiponectin 
concentrations, independently of body composition. 
The relationship between FGF23 and height SDS 
and IGF1 suggests a potential role of FGF23 in linear 
growth through the regulation of phosphate homeo-
stasis, essential for bone mineralisation. However, 
further research is required to identify the complex mo-
lecular mechanisms and metabolic pathways by which 
the GH/IGF1 axis influences and interacts with adipo-
kine secretion, ghrelin, and FGF23.
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