Discovery and uses of pegvisomant: a growth hormone antagonist
Odkrycie i zastosowanie pegvisomantu: antagonisty hormonu wzrostu

Darlene E. Berryman¹, Amanda J. Palmer¹, Elahu S. Gosney²,³, Svetha Swaminathan¹, Dave DeSantis¹, John J. Kopchick²–⁴

¹School of Human and Consumer Sciences, ²Edison Biotechnology Institute, ³Molecular and Cellular Biology Program, ⁴Department of Biomedical Sciences, Ohio University, Athens, OH

Abstract
Growth hormone (GH) is a well established participant in several complex physiological processes including growth, differentiation, and metabolism. Recombinant human GH is a drug that has been approved for use for several clinical conditions where the action of GH is diminished or completely lacking. Thus there is considerable interest in developing novel drugs that modify the function of GH. Only in the last several decades have the detailed structural features of GH along with its interaction with its receptor been elucidated. In this review we summarise the basic structural and functional properties of GH, its receptor and their interaction. In addition, we discuss the discovery and development of an effective GH receptor antagonist, pegvisomant, and summarise potential therapeutic uses of this drug.

Key words: growth hormone, growth hormone receptor, growth hormone receptor antagonist

Streszczenie
Hormon wzrostu (GH, growth hormone) uczestniczy w wielu fizjologicznych procesach dotyczących wzrastania, różnicowania i metabolizmu. Leczenie rekombinowanym ludzkim GH jest akceptowane w wielu schorzeniach wiążących się z całkowitym brakiem lub zmniejszeniem działania GH. Wynika stąd znaczną zainteresowanie rozwojem nowych leków mogących modyfikować czynność GH. Dopiero niedawno wyjaśniono dokładną strukturę GH i jego interakcję z receptorem. W niniejszej pracy autorzy podsumowują wiedzę dotyczącą podstawowej budowy GH, jego receptora i interakcji między nimi. Ponadto, omówiono odkrycie i rozwój skutecznego antagonisty receptora GH, pegvisomantu i przedstawiono potencjalne możliwości zastosowania terapeutycznego tego leku.

Słowa kluczowe: hormon wzrostu, receptor hormonu wzrostu, antagonista receptora hormonu wzrostu

Introduction
The functions of growth hormone (GH) are pervasive, having a direct or indirect impact on most tissues in the body. To exert its biological effect, GH interacts with specific GH receptors (GHRs) on the surface of target tissues. GHRs have been detected in a variety of tissues, including liver, adipose tissue, muscle, lymphocytes, prostate, kidney, placenta, heart, brain and mammary gland [1–5]. Binding of GH to GHRs on target tissues activates proteins involved in the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signal transduction pathway, as well as other pathways [6]. In addition to having a direct impact on target tissues, GH stimulates the synthesis and release of insulin-like growth factor-1 (IGF-1). Since IGF-1 has many distinct metabolic effects, GH has the ability to alter tissue function, both directly and indirectly, via IGF-1 production. Thus GH, along with IGF-1, is considered...
to have dual effects on target tissues [7, 8] with the initi-
ator of this cascade being the interaction of GH with
the GHR.

Disorders in growth, either via GH deficiency (GHD)
or by production of elevated levels of GH such as in
acromegalic individuals, have resulted in a variety of
treatment modalities. For deficiency states rhGH has
been approved by the FDA for treatment of several
growth retardation conditions in children including
GHD, Turner syndrome, chronic renal disease, Prader-
Willi syndrome and intrauterine growth retardation and
for children born small for gestational age (SAGE) or
with idiopathic short stature. In adults, rhGH has been
approved for GHD associated with a history of hypo-
thalamic and/or pituitary disorders and, more recently,
for human immunodeficiency virus (HIV)-associated
wasting. The guidelines for rhGH use in children and
adults have been thoroughly reviewed elsewhere in more
detail [9–11]. Recently, recombinant IGF-1 has been ap-
proved for children resistant or insensitive to GH treat-
ment [12]. For conditions of elevated GH (gigantism and
acromegaly) drugs that lower GH secretion (somato-
statin analogues) or inhibit GH activity (GH antago-
nists) are currently used. Thus by altering the GH/GHR
interaction both GH and IGF-1 activities will be affec-
ted. In the future the ability to uncouple the action of
GH from that of IGF-1 will certainly result in the disco-
very of new therapeutic targets.

GH and GHR structure

The primary sequence of GH from many species, as well
as the crystal structure of both porcine (p) and human
(h) GH, has provided significant insight as to the struc-
turally significant regions of this hormone. Although
somewhat variable according to the species, the main
secreted form of GH is composed of ~191 amino acids.
Analysis of the three-dimensional structure of pGH [13]
and hGH [14] has revealed that both are globular pro-
teins which contain four highly conserved cysteine re-
side residues. These cysteine residues form both a large
and a small disulfide bridge with the large bridge being
important for GH activity [15]. Approximately one half of
the amino acid residues in GH reside in four distinct
alpha helices. These four anti-parallel helices connect
in an “up-up-down-down” pattern with the core of the
four-helical bundle consisting of mostly hydrophobic
residues, which presumably function to hold the heli-
ces in a specific packed configuration [14]. Relevant to
this review, a tryptic peptide of GH containing helix
3 was previously shown to have significant growth-pro-
moting activity [16], although this was not document-
ted to be critical for GHR recognition.

The GHR belongs to the cytokine receptor superfa-
mily, which also includes the receptors for granulocy-
te-colony stimulating factor, leptin and prolactin as well
as other cytokines [17]. There are common features and
motifs among this receptor family. In particular, recep-
tor family members contain several specific disulfide
bonded Cys residues and a distinct WSXWS-like (Trp,
Ser, any amino acid, Trp and Ser) motif near the cell
membrane. The GHR is composed of approximately
620 amino acids. The N-terminus contains the extracel-
lar hormone-binding region (~245 amino acids), fol-
lowed by the 24 amino acid hydrophobic transmem-
brane region and the C-terminal domain (~350 amino
acids), which contains motifs important in intracellular
signalling [18]. On the basis of analysis of the crystal
structure of human GHR, the extracellular region con-
tains two distinct yet similarly designed domains (ter-
med 1 and 2), each composed of seven beta strands di-
vided into two anti-parallel beta sheets [14].

Interaction of GH with the GHR

The sensitivity of a tissue to GH is partly dependent on
the number of cell-surface GHRs in that tissue. The stoi-
chiometry of the ligand:receptor complex is 1:2, based
on a number of biophysical methods and later confr
med through X-ray crystallography data [14, 19]. Thus
a single GH molecule interacts with a homodimer of
the GHR. Several studies have revealed that GHR exis-
t as a preformed homodimer [20–22], which under-
goes a conformational change in the intracellular signal-
ing region of the receptor, initiating the signalling ca-
sade [23]. This account of the heterotrimeric GH:GHR
interaction is depicted in Figure 1.

The regions of GH responsible for receptor binding
have been exhaustively studied [24–29]. These studies
identified a patch of three regions of GH that come into
close proximity in the three-dimensional structure,
which are responsible for the high affinity binding of
GH to its receptor [24, 25]. These three regions of GH,
collectively referred to as Site 1, include the N-terminal
portion of helix 1, a portion of the connection between
helices 1 and 2, and the C terminal portion of helix 4.
Yet, GH forms a hGH:GHR2 complex and is an asym-
metric protein, suggesting that an additional site wi-
thin GH (first suggested by Chen et al [30]) was respon-
sible for binding the second GHR monomer. This addi-
tional site was later found in helix 3 of GH and is called
Site 2. Because two physically separate sites of a single
GH protein are responsible for binding to the GHR, it
may not be surprising that Site 1 of GH interacts with
higher affinity to GHR than Site 2 [14]. Described sequen-
tially, Site 1 of GH is thought to interact with higher
PRACE POGLĄDOWE
affinity to the first GHR monomer, followed by the binding of Site 2 of GH to the second GHR monomer with lower affinity.

Discovery of the GH antagonist

Detailed focus was placed on the 3rd α-helix of GH due to the growth-promoting abilities [16, 30, 31] observed to be specific to that helix. Mutations at 3 amino acid sites within bovine (b) GH helix 3 were engineered to provide an amphipathic formation hypothesised to further enhance the growth-promoting activity of this helix. Specifically, the substitutions were Glu-117 to Leu, Gly-119 to Arg, and Ala-122 to Asp in bGH. This GH analogue bound to the GHR’s with the same affinity as wild-type GH [30]. Surprisingly, this GH analogue antagonised the action of wild-type GH in transgenic mice, resulting in a dwarf phenotype [30–32]. This result represents the first discovery of a GH antagonist. Further investigation of each individual substitution revealed that the specific replacement of Gly-119 with Arg promoted the GH antagonist effect [29]. This single Gly-119 amino acid substitution is sufficient to promote a dwarf phenotype in mice transgenic for the GH antagonist (Fig. 2) [31].

Interestingly, the Gly at this position is conserved in all members of the GH family. The GH antagonist is able to bind with high affinity to the preformed GHR dimer while blocking subsequent signal transduction (Fig. 3) [30, 31, 33]. Gly’s side chain is made up of a single hydrogen atom, which, in the context of other amino acids in the vicinity, creates a cleft in a region of the 3rd helix (Fig. 4). The substitution of this Gly with an amino acid containing a bulky side chain fills this gap, which ultimately generates the GH antagonist [29]. It is important to note that these types of GH antagonist bind to the GHR with affinities similar to wild-type GH and do not inhibit GHR dimerisation but perturb proper or functional GHR dimerisation.
"Fill the Cleft"
PRACE POGLĄDOWE

“Fill the Cleft”
Development of a long-acting, effective GH antagonist

Owing to GH’s relatively short half life (30 minutes), it has proved challenging to create a GH antagonist molecule that was an effective therapeutic agent. In order to counteract kidney excretion of low molecular weight GH, the addition of polyethylene glycol (PEG) was used to significantly increase the molecular mass of the protein [34]. This technology was adapted for the GH antagonist. The PEG addition decreased the affinity of the GH antagonist for its receptor but still proved an effective antagonist because the serum half-life was improved [21]. Furthermore, in an attempt to improve the affinity of the pegylated GH antagonist for its receptor, 8 amino acid substitutions were generated at Site 1, each of which had previously been shown to improve the affinity for GH binding protein [35]. This 8 amino acid substituted and pegylated antagonist (containing lysine at Gly 120) had improved binding affinity for membrane receptors as compared to the pegylated Gly 120K antagonist, resulting in a more effective molecule [21].

This pegylated GH antagonist has been termed pegvisomant and the approved marketed name is Somavert ® (pegvisomant for injection). Many papers have documented the clinical efficacy of pegvisomant and these will not be further reviewed here. However, readers should visit the following papers and reviews for specific details concerning the many clinical trials [36–45].

Pegvisomant and diabetes

Although it has been known for many decades that GH inhibits insulin’s action[46–49], the mechanism responsible for this effect has remained elusive. Recent data have started to illuminate possible mechanisms. For example, a recent link between a specific GHR poly-
morphism and resistance to Type 2 diabetes (T2DM) has been presented [50]. Furthermore, mice transgenic for bGH are insulin resistant, while mice that lack GH signalling are insulin sensitive despite their obesity [51–53]. In terms of intracellular signalling events that account for GH-induced insulin resistance, disruption of p85alpha, a subunit of PI 3-kinase, will increase insulin sensitivity, while elevated p85alpha levels are associated with insulin resistance [54–57]. A recent study by del Rincon et al. reports that GH up-regulates expression of p85alpha in white adipose tissue and suggests this may be responsible for alterations in insulin sensitivity seen in mouse models of altered GH action [58]. A similar situation also occurs in muscle [56]. Thus the diabetogenic effect of GH may be due to “cross-talk” between the GH and insulin signalling pathways.

The established impact of GH on insulin sensitivity led researchers to monitor parameters of insulin action in human subjects given pegvisomant. Healthy subjects given pegvisomant for 7 days did not show altered glucose tolerance or stimulated insulin secretion [59]. As pegvisomant began to be used to treat acromegaly, a disease often accompanied by insulin resistance and diabetes, clinicians were able to examine the effect of this drug on insulin sensitivity and other measures of diabetes. In 2002 Rose and Clemmons reported that treatment with pegvisomant lowered fasting insulin, glucose and haemoglobin A1C levels in patients with acromegaly [60]. Later studies have further confirmed an improvement in insulin sensitivity following pegvisomant treatment of patients with acromegaly [61–63].

Clearly, pegvisomant can improve insulin and glucose levels in patients with acromegaly, but what about patients with other insulin-related conditions? Williams et al. treated young, Type 1 diabetic adults with 5 or 10 mg/day of pegvisomant for 3 weeks [64]. No changes in insulin sensitivity under hyperinsulinaemic euglycaemic clamp conditions were observed; however, both doses of pegvisomant decreased the amount of insulin required overnight to maintain euglycaemia. Thus although there has been limited research to date, pegvisomant shows promise for treating not only acromegaly with insulin resistance but also young adult patients with Type 1 diabetes. Further research is required to determine if pegvisomant treatment might benefit patients with type 2 diabetes as well.

Pegvisomant and nephropathy

Long and short term renal changes can be caused by GH and IGF-1. Transgenic mice expressing GH antagonist are dwarf and have reduced circulating IGF-1 levels [30, 32]. When GH antagonist mice are made diabetic, they are protected from renal damage [65]. In addition, treatment of control and diabetic mice with GH antagonist protects them from renal damage [66, 67] and prevents compensatory renal growth in uni-nephrectomised mice [68]. The mechanism in which GH antagonist protects the kidney has not been determined, but studies point to several possibilities. When exogenous GH antagonist is administered in increasing doses to adult female Balb/C mice, there is a dose-dependent decrease in hepatic and serum IGF-1 levels, no effect on hepatic or renal IGFBP-1 and 3 levels, and an increase in hepatic and circulatory IGFBP-4 levels [69]. In effect, this would create a significant decrease in IGF-1 bioavailability. Additionally, variable concentrations of pegvisomant have a significant impact on the GHR/GHBP gene transcription in stable cell lines of T-SV40 immortalised glomerular mesangial cells [70, 71]. Interestingly, GH antagonist has been reported to inhibit GHR/GHBP gene transcription directly at the cellular level in human mesangial cells at all concentrations of pegvisomant tested [72]. Collectively, this data indicates that pegvisomant administration may influence kidney function.

Pegvisomant and retinopathy

The role of GH in the development of retinopathy was first described after ablation of the pituitary gland resulted in reduction of the disease [73, 74]. This result, coupled with the fact that diabetic dwarfs do not develop retinopathy [75], suggests that the use of GH antagonists for the treatment of diabetic retinopathy may be beneficial. Furthermore, results using mice expressing a GH antagonist to study non-diabetic ischaemia-induced retinal neovascularisation showed an inhibition of neovascularisation despite elevated levels of vascular endothelial growth factor receptor [76]. Pegvisomant treatment of diabetic patients with severe retinopathy ensued. In this 12-week study, where type 1 and type 2 diabetic patients were treated daily with pegvisomant, no regression of retinopathy was seen [77]. However, considering the short length of the study as well as the advanced retinopathy of the subjects, further studies are warranted.

Pegvisomant and cardiovascular disease

Acromegaly has been shown to be associated with an increased cardiovascular risk. Thus it is not surprising that CRP (C-reactive protein), a common marker for cardiovascular risk, were found to be lower with the administration of pegvisomant in humans [78]. Since pegvisomant blocks GHR activation and decreases IGF-1 production, the effects observed on CRP could be mediated both by the decrease in IGF-1 and the direct effect of GHR blockade. GH antagonist treatment in patients with acromegaly is
also known to induce a reduction in diastolic blood pressure in hypertension and improve glucose metabolism [62]. A recent study by Pivonello et al. also showed that pegvisomant can reverse left ventricle hypertrophy and progressively improve left ventricular diastolic and systolic performance in acromegals [79]. Thus long term treatment with pegvisomant has positive effects on cardiovascular function and may prevent the development or progression of cardiac insufficiency, at least for acromegals.

Pegvisomant and cancer

The IGF-1/GH axis has been implicated in contributing to the growth and formation of many different cancers [80, 81]. IGF-1 has been shown to be a growth factor for numerous types of cancer and neoplastic growth [82]. Additional studies have also shown that some neoplasms are also capable of producing autocrine and/or paracrine IGF-1 [82]. Transfection of MCF-7 cells with the hGH gene showed that these cells synthesised and secreted hGH into the media, and these cells were found to have higher levels of STAT5-mediated transcriptional activation than controls [83]. The disruption of excess GH stimulation and therefore reduction in IGF-1 levels may therefore be useful in the treatment of numerous cancers.

Multiple studies using both animals and humans have attempted to show the beneficial use of GH antagonist to prevent or slow the growth of various tumours. GH antagonist mice were found to have lower IGF-1 levels and a decreased mammary tumour incidence in relation to litter-mate controls when exposed to a chemical carcinogen [84]. Additional studies using GHR-/-and C3(1)/Tag mouse models showed an inhibition of oestrogen-independent mammary carcinogenesis [85]. Recently a study using the spontaneous dwarf rat (an animal known to have lower levels of GH and IGF-1) injected with GH showed that these animals were more vulnerable to mammary carcinogenesis with increasing levels of circulating IGF-1 and GH [86]. Pegvisomant administration to virgin female mice caused a 70–80% reduction in serum IGF-1 levels and a 30% reduction in the volume of MCF-7 xenografts [87]. In mice the growth of human meningioma xenografts significantly decreased following pegvisomant treatment, and in some cases tumour regression was observed [88]. Additional studies xenografting human colorectal cancer lines into female nude mice with subsequent pegvisomant treatment reported a 39% reduction in tumour volume with a reduction in both IGF-1 and IGFBP-3 levels [89]. Studies involving GHR disrupted and Tag mice suggest that the disruption of GH signalling may also reduce prostate carcinogenesis [90]. These results indicate a potential therapeutic use of pegvisomant in the prevention and treatment of certain cancers.

Conclusion

Since the initial discovery of a growth hormone antagonist [30] both basic and clinical studies have advanced. In terms of human use, the growth hormone antagonist Somavert® (pegvisomant for injection) has been approved for lowering IGF-1 levels in acromegalic individuals. Further studies are likely to provide insight into its therapeutic potential for the treatment of diabetes, diabetic complications and cancer indications. Finally, the growth hormone antagonist is now a commonly used reagent that specifically antagonises the effects of growth hormone in many basic research scenarios. In the future, the growth hormone antagonist will also assist researchers in uncoupling the biological effects of growth hormone from those of IGF-1.

Acknowledgements

JJK is supported in part by funds from the State of Ohio’s Eminent Scholar Program, which includes a gift from Milton and Lawrence Goll, and by grants from AMVETS, WADA, DiAthegen, LLC, and NIH R01 AG019899-06, R01 CA099904-01, and U24 DK059630. DEB is supported by grants from the National Institute of Diabetes and Digestive and Kidney Disease (grant DK064905) and from the Diabetes Research Initiative at Ohio University. AJF and DD are also supported by the Diabetes Research Initiative at Ohio University.

We thank Charlotte Trainer for carefully reading this review.

References

65. Chen NY, Chen WY, Kopchick JJ. A growth hormone antagonist protects mice against streptozotocin induced glomerulonephrosis even in the presence of elevated levels of glucose and glycated hemoglobin. Endocrinology 1996; 137 (11): 5163–5165.