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lism and may be associated with metabolic syndrome 
[3, 4]. However, several studies have shown that not 
only patients with MACS but also patients with NFAI 
are at increased risk of type 2 diabetes, dyslipidaemia, 
and hypertension, which is potentially related to glu-
cocorticoid (GCs) excess [4–6]. Currently, it is known 
that cortisol secretion should not be considered as 
a dichotomous condition, but rather as a wide spec-
trum of cortisol release, from normal range, through 
subtle autonomous form, then mild autonomic cortisol 
secretion, to the rare clinical overt adrenal Cushing 
syndrome [2]. It can be assumed that patients with 

Introduction

The most common adrenal tumours are adrenal corti-
cal adenomas (ACA). They are most often hormon-
ally non-functioning adrenal incidentalomas (NFAI). 
However, 20–50% may present mild autonomic cortisol 
secretion (MACS) [1–3].

MACS is defined by European Society of Endo-
crinology guidelines as serum cortisol after 1 mg of 
dexamethasone greater than 1.8 μg/dL (50 nmol/L), in 
the absence of the classic features of Cushing syndrome 
[4]. MACS may impair both glucose and lipid metabo-
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Abstract 
Introduction: Epidemiological studies have reported a link between adrenocortical adenomas (ACA), obesity, and cardiometabolic risk. 
Fibroblast growth factor 21 (FGF21) is a stress-induced protein synthesised predominantly in the liver, which regulates metabolism. 
The aim of the current study was to evaluate the concentration of FGF21 in patients with ACA and its relationship with hypothalamic-pi-
tuitary-adrenal function, obesity, markers of cardiometabolic health, and adenoma size.
Material and methods: A total of 197 patients with ACA were included in the analysis, 82 diagnosed with mild autonomous cortisol secre-
tion (MACS) and 115 with non-functioning adrenal adenoma incidentaloma (NFAI). MACS was defined as serum cortisol concentration 
post 1 mg dexamethasone test (DST) ≥ 1.8 μg/dL. In each patient weight, height, and waist circumference were measured, and body mass 
index (BMI) was calculated. Serum concentrations of FGF21, cortisol, dehydroepiandrosterone sulphate, adrenocorticotropic hormone 
(ACTH), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides, glucose, 
and insulin were measured. The cortisol-to-ACTH ratio, homeostatic model assessment for insulin resistance index (HOMA-IR), lipid ac-
cumulation product (LAP), and cardiometabolic index (CMI) were calculated. Adrenal tumour size was evaluated from imaging procedures.
Results: Serum FGF21 concentrations were significantly higher in patients with MACS than in NFAI, which was independent of BMI. 
There were no differences between MACS and NFAI groups regarding HOMA-IR, LAP, and CMI. We observed a positive correlation 
between serum FGF21 concentration and cortisol level after DST, as well as the cortisol-to-ACTH ratio. FGF21 was negatively correlated 
with dehydroepiandrosterone sulphate (DHEAS). There were no significant correlations between serum FGF21 concentration and BMI, 
waist circumference, and HOMA-IR, but serum FGF21 levels were positively correlated with TG, LAP, and CMI. Positive relationships 
between adenoma size and serum FGF21 concentration were found.
Conclusions: Higher levels of FGF21 in adrenal tumours with MACS when compared with NFAI represent another pathophysiological 
link related to chronic glucocorticoid excess. 
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tivity. FGF21 can cross the blood–brain barrier and acts 
directly on the hypothalamus to increase the activity of 
the HPA axis. This phenomenon triggers the secretion of 
GCs from the adrenal cortex and induces enlargement 
of the adrenal glands [23, 24]. Furthermore, in the ad-
renal gland, FGF21 has been shown to increase the ex-
pression of genes necessary for the synthesis of GCs. 
In addition, FGF21 increases GCs secretion in response 
to ACTH [26]. However, interactions between FGF21 
and GCs are bilateral, and it was reported that GCs 
through GC receptors may induce FGF21 expression 
in the liver [26]. In individuals with obesity, a parallel 
increase in the concentration of both FGF21 and GCs 
in the blood was observed [19].

The reports on the role of FGF21 in adrenal tumours 
and cortisol secretion are scarce [27, 28]. The goal of 
this study was to provide information about FGF21 
serum concentrations in patients with non-functioning 
adrenal adenomas as well as in patients with adenomas 
presenting mild autonomous cortisol secretion, and its 
relationship with hypothalamic-pituitary-adrenal func-
tion, obesity, markers of cardiometabolic health, and ad-
enoma size. 

Material and methods

We analysed the medical data of patients with inciden-
tally discovered ACA admitted in our centre. The study 
was approved by the Bioethics Committee at Maria 
Sklodowska-Curie National Research Institute of 
Oncology, Gliwice Branch.

Diagnosis of adrenal cortical adenoma was based 
on computed tomography (CT) or magnetic resonance 
imaging (MRI). Hormonal testing was performed ac-
cording to current clinical guidelines. 

We excluded from the study patients with overt hy-
percortisolism and primary hyperaldosteronism. 

Only patients with 2 subtypes — NFAI and MACS 
— were eligible for the study. We used the DST cut-off 
of 1.8 μg/dL to identify the NFAI group (serum cortisol 
after DST less than 1.8 μg/dL). Subjects with serum corti-
sol concentration post DST ≥ 1.8 μg/dL, without classical 
Cushing’s signs, were classified as MACS. In cases of 
MACS diagnosis, ACTH independence was confirmed 
as suppressed or low normal ACTH concentration. 

Individuals with chronic inflammatory diseases 
and chronic kidney failure were excluded from 
the study.

Finally, 197 patients were included in the analysis 
— 82 diagnosed with MACS and 115 with NFAI.

Each patient underwent a routine physical exami-
nation. Weight, height, and waist circumference (WC) 
were measured, and body mass index (BMI) was calcu-
lated. All studied participants were divided, according 

NFAI may have a slight excess of GCs, which is not 
detected by commonly available diagnostic tests, or it 
occurs periodically. 

The population studies have shown that the in-
cidence of ACA is higher in people with obesity or 
overweight compared to people of normal weight 
[7]. The detailed mechanisms of mutual links between 
obesity and adrenal tumours are unknown. So far, 
it has not been clearly established whether tumours 
develop in the course of obesity as a consequence of 
insulin resistance, hyperinsulinaemia, and insulin-like 
growth factor (IGF) overexpression, or if obesity is 
secondary to mild but chronic GCs excess released 
by the ACA [8]. Insulin and IGF-1 have mitogenic 
activity, which stimulates the proliferation of adre-
nal cortex cells and contributes to tumour growth 
[9]. IGF-1 receptor (IGF-1R) and insulin receptor (IR) 
are located in the adrenal cortex [8,10]. Moreover, 
the degree of insulin resistance has been shown to 
be positively correlated with the diameter of ACA, 
and adrenalectomy improved insulin sensitivity in 
patients with NFAI [11, 12]. 

Adrenocortical growth is also controlled by growth 
factors such as fibroblast growth factors (FGFs). FGF 
receptor (FGFR) signalling is critical to maintain corti-
cal cell growth and proliferation. The mitogenic effects 
of FGF on adrenal cortical cells were first observed by 
Gospodarowicz et al. and Hornsby and Gill [13, 14]. 
FGFRs have been detected in both the adrenal capsule 
and cortex [15]. 

One of the members of the FGF family, prefer-
entially expressed in the liver, is fibroblast growth 
factor 21 (FGF21), which mainly presents metabolic 
effects, but the mitogenic influence is also recognised. 
This protein improves insulin sensitivity, promotes 
fatty acid oxidation, and increases energy expenditure. 
However, in humans the pathophysiological role of 
FGF21 is much more complex and far from understood. 
Despite the beneficial effects of FGF21 observed in ani-
mal models, it is difficult to confirm the favourable effect 
of FGF21 in obese people. In response to chronic nutri-
tional metabolic stress, FGF21 is paradoxically upregu-
lated, and increased serum FGF21 concentrations are 
observed in individuals with visceral fat accumulation, 
metabolic syndrome, and type 2 diabetes. People with 
obesity and metabolic disorders have impaired FGF21 
signalling and decreased FGF21 sensitivity [16–19]. 

The expression and secretion of FGF21 increase in 
response to hepatic PPARa activation, during fasting, 
or high-fat, high-carbohydrate, and low-protein diets 
[20]. Other non-nutritional factors such as physical 
exercises and stress conditions also play a role [21, 22]. 

A complex feedback has been documented between 
FGF21 and hypothalamic-pituitary-adrenal (HPA) ac-
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to the BMI, into a group without obesity (BMI < 30 
kg/m2) or a group with obesity (BMI ≥ 30 kg/m2).

In all patients venous blood samples were taken in 
the morning fasting state, and serum concentrations 
of FGF21, cortisol, dehydroepiandrosterone sulphate 
(DHEAS), plasma adrenocorticotropic hormone 
(ACTH), total cholesterol, high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C), triglycerides (TG), glucose, and insulin 
were measured. The cortisol to ACTH ratio was calculat-
ed. Serum FGF21 assay was performed by ELISA meth-
ods using commercial assay (Fibroblast Growth Factor 
21 Human ELISA, BioVendor R&D). Cortisol, DHEAS, 
and ACTH were measured by chemiluminescence 
immunoassay analyser in the IMMULITE-2000XPi 
platform, Siemens. The measurement of cholesterol, 
HDL-C, LDL-C, TG, and glucose was performed using 
enzymatic methods.

As metabolic health parameters we used lipid ac-
cumulation product (LAP) and cardiometabolic index 
(CMI), calculated as shown below:

LAP = [WC (cm) – 65] × TG (mmol/L) for men, 
and LAP = [WC (cm) – 58] × TG (mmol/L) for women

CMI = TG (mmol/L) / HDL (mmol/L) × WHtR 
(waist to height ratio)

We also calculated the homeostatic model assess-
ment for insulin resistance index (HOMA-IR), using 
the formula as follows: 

Fasting concentration of glucose (mmol/L) × fasting 
concentration of insulin (mIU/mL) / 22.5

Adenoma size was assessed by the largest diameter 
of the tumour. In the case of lesions in both adrenal 
glands, the maximal diameter of the largest mass was 
considered as an adenoma size. All patients were divid-
ed into the following groups depending on tumour size:

—— group 1 — ACA size < 20 mm;
—— group 2 — ACA size ≥ 20 mm but < 40 mm;
—— group 3 — ACA size ≥ 40 mm.
Data regarding the presence of comorbidities like 

diabetes mellitus and hypertension were collected as 
binary variables (present or nor present).

Statistical analysis was performed using STATIS-
TICA 13.3, StatSoft Inc. Data were tested for normal 
distribution using the W Shapiro-Wilk test. All continu-
ous data were presented as mean values with standard 
deviations and medians. Groups were compared by 
Student’s test or U Mann-Whitney test. Correlations 
between variables were estimated by calculating 
the correlation coefficient R by Spearman’s method. 

Differences in categorical variables between groups 
were tested using the chi-squared test. 

The Kruskal-Wallis ANOVA test was used in testing 
whether there was a statistically significant difference 
in FGF21 levels between groups 1, 2, and 3 or not.

Multiple regression analysis was performed with 
serum FGF21 level as a dependent variable. All results 
were considered as statistically significant with p < 0.05. 

Results

Among 197 patients (148 female, 49 men), 82 (41.62%) 
were diagnosed with MACS (67 female, 15 male) 
and 115 (58.38%) with NFAI (78 female, 37 male).

There were 104 (52.79%) patients without obesity 
and 93 (47.21%) patients with obesity.

The characteristics of NFAI and MACS, includ-
ing hormonal profiles and metabolic parameters, are 
presented in Table 1. Most tumours were unilateral. 
The prevalence of bilateral disease was higher in MACS 
than in NFAI. The mean BMI of all patients was 29.50 
kg/m2. The groups did not differ in terms of BMI, WC, 
LAP, and CMI. 

The mean serum FGF21 concentration was sig-
nificantly higher in patients with MACS compared to 
the NFAI group. Patients with MACS had similar basal 
cortisol, a higher cortisol-to-ACTH ratio, and lower 
concentrations of DHEAS and ACTH compared to 
subjects with NFAI. 

A higher prevalence of hypertension was observed 
in the MACS group than in the NFAI group. There was 
no difference between NFAI and MACS patients with 
regard to diabetes. Groups did not differ in lipid profile 
and fasting glucose, or in terms of HOMA-IR.

The mean dimension of adrenal tumour was sig-
nificantly larger in the MACS than in the NFAI group. 
The tumour distribution according to their size in 
patients with ACA is depicted in Table 1 and Figure 1. 
NFAI patients were more likely to have tumours with 
a diameter of less than 20 mm compared to MACS pa-
tients (Tab. 1, Fig. 1A). In patients with MACS, the most 
common tumours were 2–4 cm in size (Tab. 1, Fig. 2A).

Spearman correlation was used to assess the cor-
relation between the analysed variables in all partici-
pants. The results are given in Table 2. We observed 
a positive correlation between serum FGF21 con-
centration and cortisol level after DST. Furthermore, 
correlation analyses revealed that FGF21 levels 
positively correlated with morning cortisol and cor-
tisol-to-ACTH ratio. Conversely, serum FGF21 levels 
negatively correlated with DHEAS. There were no 
significant correlations between serum FGF21 con-
centration and body composition parameters such 
as BMI and WC, but serum FGF21 levels positively 



4

O
R

IG
IN

A
L 

PA
PE

R

FGF21 in patients with MACS and NFAI	 Lucyna Siemińska et al.

Table 1. Clinical, biochemical, and hormonal characteristics of patients with non-functioning adrenal incidentaloma (NFAI) 
and with mild autonomous cortisol secretion (MACS)

Variables NFAI (n = 115) (78F/37M) MACS (n = 82) (67F/15M)

Age 62.57 ± 9.92; [64.50] 64.88 ± 8.24; [65.00] NS

BMI [kg/m2] 29.88 ± 4.42; [29.74] 28.96 ± 5.06; [28.54] NS

WC [cm] 104.02 ± 11.29; [104.00] 102.68 ± 12.47; [101.50] NS

Cholesterol [mmo/L] 5.17 ± 1.21; [5.12] 5.26 ± 1.31; [5.20] NS

HDL [mmo/L] 1.39 ± 0.32; [1.36] 1.43 ± 0.38; [1.40] NS

LDL [mmo/L] 3.39 ± 1.14; [3.40] 3.69 ± 2.96; [3.35] NS

TG [mmo/L] 1.40 ±  0.71; [1.27] 1.49 ± 0.70; [1.37] NS

Glucose [mmo/L] 5.88 ± 0.96; [5.67] 6.04 ± 0.97; [5.90] NS

HOMA-IR 2.68 ± 1.78; [2.19] 2.25 ± 0.96; [2.09] NS

LAP 63.41 ± 43.10; [52.80] 65.77 ± 35.39; [58.28] NS

CMI 0.71 ± 0.52; [0.54] 0.75 ± 0.53; [0.59] NS

Cortisol [µg/dL] 10.87 ± 4.13; [10.60] 13.86 ± 11.17; [12.20] < 0.001

ACTH [pg/mL] 15.32 ± 7.68; [13.10] 10.41 ± 7.60; [9.29] < 0.001

Post-DST cortisol [µg/dL] 1.21 ± 0.27; [1.09] 3.44 ± 1.70; [3.04] < 0.001

DHEAS [µg/dL] 100.59 ± 76.27; [86.40] 65.03 ± 79.12; [32.00] < 0.01

Cortisol-to-ACTH ratio 0.89 ± 0.70; [0.68] 1.77 ± 1.63; [1.32] < 0.001

FGF21 [pg/mL] 220.67 ± 197.44; [155.73] 459.18 ± 556.43; [331.11] < 0.001

Hypertension, n (%) 73 [63.48] 65 [79.27] < 0.05

T2DM, n (%) 44 [38.26] 29 [35.37] NS

Mean adenoma size [mm] 20.75 ± 9.09 [20.00] 32.12 ± 15.92 [30.00] < 0.001

Adenoma size categories 

< 20 mm, n (%)

≥ 20 mm < 40 mm, n (%)

≥ 40 mm, n (%)

58 [50.43]

52 [45.22]

5 [4.35]

16 [19.51]

55 [67.07]

11 [13.42]

< 0.001

< 0.01

< 0.05

Bilateral disease, n (%) 18 [15.65] 23 [28.05] < 0.05

BMI — body mass index; WC — waist circumference; HDL — high-density lipoprotein; LDL — low-density lipoprotein; TG — triglycerides; 
HOMA-IR — homeostatic model assessment for insulin resistance index; LAP — lipid accumulation product; CMI —cardiometabolic index; ACTH 
— adrenocorticotropic hormone; post-DST — post 1 mg dexamethasone test; DHEAS — dehydroepiandrosterone sulphate; FGF21 — fibroblast growth factor 21; 
T2DM — type 2 diabetes mellitus; NS — non significant

Figure 1. Division of adrenal tumours according to tumour size. A. Size-based division of non-functioning adrenal adenoma (NFAI); 
B. Size-based division of mild autonomous cortisol secretion (MACS)
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correlated with TG, glucose, LAP, and CMI. There was 
positive correlation between FGF21 concentration 
and adenoma size.

Figure 2 compares FGF21 concentrations in groups 
1, 2, and 3. The lowest FGF21 concentrations were de-
tected in ACA < 2 cm and the highest in ACA ≥ 4 cm 
(Fig. 2).

To assess the potential effects of obesity, we per-
formed a subgroup analysis according to the presence 
or absence of obesity (Tab. 3). There were no differences 
in the prevalence of MACS in patients with BMI < 30 
kg/m2 and BMI ≥ 30 kg/m2 (42.31% vs. 40.86%). Similarly, 
no differences were found in the prevalence of NFAI 
between subjects with and without obesity. 

As demonstrated in Table 3, when we compared 
MACS with NFAI among subjects with and without 
obesity separately, higher FGF21 concentrations were 
observed in MACS patients in both subgroups. There 
were no differences in FGF21 between obese NFAI 
and non-obese NFAI individuals, as well as between 
obese MACS and non-obese MACS. When all subjects 
were stratified by BMI, the prevalence of hypertension 
was 92.11% in obese MACS and 68.18% in non-obese 
MACS. 

Variables that were found to be correlated with 
serum FGF21 in univariate analysis were used in 
the multiple regression analysis (Table 4). Only cortisol 
after DST remained significantly associated with FGF21.

Figure 2. Concentration of fibroblast growth factor (FGF21) in all patients with adrenocortical adenomas (ACA) divided according to 
tumour size 

FGF21 median (25–75%)
Kruskal-Wallis ANOVA, p < 0.05
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Table 2. Correlations of serum of fibroblast growth factor 21 
(FGF21) with anthropometric, biochemical, and hormonal 
variables in all patients

Variables R Spearman p

FGF21 and age  0.07 NS

FGF21 and BMI  0.09 NS

FGF21 and WC  0.13 NS

FGF21 and cholesterol  0.07 NS

FGF21 and HDL –0.14 < 0.05

FGF21 and LDL  0.05 NS

FGF21 and TG  0.31 < 0.001

FGF21 and glucose  0.23 < 0.01

FGF21 and HOMA-IR –0.00 NS

FGF21 and LAP  0.36 < 0.001

FGF21 and CMI  0.31 < 0.001

FGF21 and cortisol  0.18 < 0.05

FGF21 and ACTH –0.14 NS

FGF21 and cortisol after DST  0.39 < 0.001

FGF21 and DHEAS -0.21 < 0.01

FGF21 and cortisol-to-ACTH ratio  0.26 < 0.001

FGF21 and adenoma size 0.15 < 0.05

BMI — body mass index; WC — waist circumference; HDL — high-density 
lipoprotein; LDL — low-density lipoprotein; TG — triglycerides; 
HOMA-IR — homeostatic model assessment for insulin resistance 
index; LAP — lipid accumulation product; CMI —cardiometabolic index; 
DST — 1 mg dexamethasone test; DHEAS — dehydroepiandrosterone sulphate; 
ACTH — adrenocorticotropic hormone; NS — non significant
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Discussion

In epidemiological studies, adrenal incidentalo-
mas have been associated with obesity and metabolic 
syndrome [4, 6, 7, 29–31].

In our study, among all patients with ACA, 
the prevalence of obesity was 47.21%. Other authors 
observed a similar incidence of obesity in patients with 
adrenocortical tumours [31–33]. In the retrospective 
cross-sectional study conducted at Poznan University 
of Medical Sciences, among 2005 patients with adrenal 
tumours, 37.5% of subjects had overweight, while 38.3% 
had obesity [31]. In another group of 300 Polish people 
with adrenal tumours, 40% had overweight and 39.4% 
had obesity [32]. In a study conducted among 305 pa-
tients with NFAI in the Spanish population, obesity was 
diagnosed in 39.3% of the subjects [33].

This frequency is higher than estimated by statistical 
data in the general population. Currently, the preva-
lence of obesity among adults aged 18 years or older 
in the global population is estimated at 16%, while in 
the European region it is no more than 25% [34, 35].

Relationships between adrenal tumours and obesity 
are bidirectional. ACA development in associations 
with obesity can be attributed to hyperinsulinaemia, 
hyperleptinaemia, insulin resistance, increased pro-
duction of IGF-1, and different inflammatory cyto-
kines. However, tumours may produce subtly higher 
amounts of cortisol, which are not detectable by current 
diagnostic methods [5]. This could explain why NFAIs 
are at increased risk of type 2 diabetes, dyslipidaemia, 
and hypertension [36–38]. 

The persisting excess of GCs has been shown to 
induce lipogenesis and adipogenesis in visceral depots. 
Moreover, it has been demonstrated that GC recep-
tors are more abundant in visceral adipose tissue than 
in subcutaneous fat [39]. Furthermore, GCs increase 
the expression of lipogenesis enzymes in hepatocytes 
and cause brown adipose tissue dysfunction [40]. In 
addition, GCs can directly affect appetite and may be 
a cause of overeating [41].

It is worth noting that in humans, FGF21 regulates 
the same processes as GCs: energy homeostasis, glu-
cose, and lipid metabolism [42]. Moreover, like GC, 
FGF21 modulates eating behaviour and shows similar 
circadian rhythms [43, 44]. 

In our study, we have shown that the FGF21 con-
centration was higher in the MACS group compared 
to NFAI patients. 

The underlying mechanisms are unknown, but our 
findings are consistent with the observations of other 
researchers [27, 28]. A previous cross-sectional study 
found that patients with autonomous adrenal and pi-
tuitary cortisol secretion had significantly higher FGF21 
concentrations than healthy controls [28]. 

It is not clear whether the increase of FGF21 in 
MACS is only a consequence of chronic GC excess, 
which promotes the accumulation of visceral fat, or 
whether elevated concentrations of FGF21 are related 
to the direct influence of GCs on FGF21. The results of 
the study by Ďurovcová et al., including 14 patients 
with Cushing syndrome and 36 control subjects, sug-
gested that increased FGF21 concentrations in patients 
with overt hypercortisolism were more due to obesity 
and metabolic abnormalities than to a direct effect 
of hypercortisolaemia on FGF21 secretion [28]. 

Evidence for the importance of GCs in the develop-
ment of central obesity comes from experimental studies 
in animals. Adrenalectomy prevents the development 
of obesity in Zucker rats, while corticosterone adminis-
tration leads to fat accumulation in central depots [45]. 
In another experimental animal model, ovariectomised 
(OVX) mice developed abdominal obesity with simul-
taneous increases in GC concentrations. Interestingly, 
this effect disappeared in OVX FGF21 knockout mice 
[46]. This model suggests that FGF21 may be the link 
between GCs and obesity. 

In our study, the NFAI and MACS groups were 
comparable for BMI and WC, but even for similar 
anthropometric parameters the FGF21 concentrations 
were still significantly higher in MACS than in NFAI. 
Furthermore, when we divided all subjects into 2 
subgroups, 104 subjects without obesity and 93 with 
obesity, with the analysis performed separately in each 
group, the results showed that FGF21 was still signifi-
cantly higher in MACS, eliminating obesity as the main 
factor that influences serum FGF21 level.

In vivo and in vitro experimental studies have shown 
that GCs and FGF21 regulate their production in a feed-
back loop. FGF21 acts as a neuroendocrine signal that 
activates the HPA axis and increases adrenocortical 
function [23–25]. Furthermore, the study by Patel et al. 
has shown that in the adrenal gland, FGF21 increases 
the expression of genes necessary for GC synthesis 
and favours GC secretion in response to ACTH [26]. 

Table 4. Multiple regression analysis for fibroblast growth 
factor 21 (FGF21) serum. Dependent variable: FGF21

Independent variable Regression coefficient p

CMI 0.21 NS

LAP 0.03 NS

DHEAS 0.04 NS

Cortisol after DST 0.20 < 0.05

Adenoma size –0.01 NS

CMI — cardiometabolic index; LAP — lipid accumulation product; 
DHEAS — dehydroepiandrosterone sulphate; DST — 1 mg dexamethasone test
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However, it seems that in humans, FGF21 does not 
directly stimulate adrenocortical steroidogenesis, be-
cause negative correlations between FGF21 and DHEAS 
were documented in our study. This observation argues 
against the hypothesis that FGF21 is a pivotal inducer in 
the relationships between FGF21 and GCs. Therefore, 
it seems more likely that an increase in FGF21 is a con-
sequence of a slight excess of GC secretion.

In our study, we found a striking positive relation-
ship between FGF21 and cortisol after DST. Further-
more, FGF21 has been shown to correlate positively 
with the cortisol-to-ACTH ratio and negatively with 
ACTH and DHEAS. ACTH and DHEAS are usually mea-
sured when autonomous cortisol secretion is suspected, 
and it may be useful for estimating the presence of 
MACS. In turn, it is assumed that the cortisol-to-ACTH 
ratio reflects the state of the HPA axis, and that a higher 
ratio may be a useful indicator of the subclinical form 
of hypercortisolaemia in patients with adrenal tumours 
[47]. 

Our findings demonstrating the associations be-
tween GCs and FGF21 are in line with the results of 
Al-Aqil et al., who reported that treatment with dexame-
thasone, prednisolone, and budesonide increased liver 
FGF21 mRNA in experimental animals [48]. Similarly, 
Vispute et al. documented that dexamethasone can 
directly regulate the expression of FGF21 in mouse liver 
and human hepatoma cells, in a dose- and time-depen-
dent manner [49]. 

It is well documented that the FGF21 concentration 
also rises in metabolic syndrome [50, 51]. It is not elu-
cidated whether elevated serum levels of FGF21 result 
from resistance to its action or from compensatory 
increased secretion [19].

Several studies have shown that serum FGF21 levels 
are increased in obesity [52–54]. In our study we did not 
observe a positive correlation between FGF21 concen-
tration and BMI nor WC. Likewise, in the study encom-
passing more than 100 pairs of twins, subjects with high 
FGF21 concentrations had similar measures of overall 
adiposity (body mass index, body fat percentage) as 
subjects with lower FGF21. Moreover, in the monozy-
gotic twin group higher liver fat but not subcutaneous 
or intraabdominal fat content was found in subjects 
with high FGF21 [55]. Similarly, in the study by Crudele 
et al. there was no positive correlation between BMI 
and FGF21 levels [56]. It is suggested that in humans 
the relationship between circulating FGF21 and BMI 
remains more complicated. Such discrepancies may 
be due to subject characteristics or interindividual 
variations of serum FGF21 concentrations [57]. In our 
study, the mean BMI was relatively low: in the NFAI 
group 29.88 and in the MACS group 28.96, which may 
affect the results. 

However, our study showed a positive correlation 
between FGF21 and LAP and CMI, which are meta-
bolic indexes dependent on obesity parameters (WC, 
WHtR) but also on TG concentration. In the study of 
Tyynismaa et al. it was shown that high liver fat and TG 
rather than overall adiposity are associated with high 
FGF21 levels [55]. Similarly, Lee et al. confirmed that 
serum FGF21 concentrations were significantly as-
sociated with lipid profiles, and especially positively 
correlated with the TG level, which is in line with our 
findings [57]. FGF 21 decreases hepatic lipogenesis 
and suppress white adipose tissue lipolysis, which 
results in lowering TG concentration [50]. It is not 
clear if FGF21 increment in hypertriglyceridaemia 
state is compensatory excessive secretion or, for ex-
ample, a consequence of impaired FGF21 reactivity in 
adipocytes [58]. Upon these findings, there are ongo-
ing trails concerning the use of FGF21 analogues to 
diminish circulating TG and consequently to reduce 
liver fat fraction [50].

FGF21 has emerged as an important beneficial 
regulator of not only lipid homeostasis but also glu-
cose metabolism, with its levels abnormally increased 
in insulin-resistant states in rodents and humans 
[59]. The principal glucose-lowering effect of FGF21 
depends on enhancing peripheral glucose disposal 
in brown adipose tissue, accomplished by an increase 
in peripheral insulin sensitivity [60, 61]. Surprisingly, 
we did not observe a positive correlation of FGF21 
concentration and HOMA-IR. Nevertheless, it is worth 
pointing out the relatively low mean HOMA-IR in our 
study: in the NFAI cohort 2.68 and in MACS group 
even lower 2.25, which may not be enough to pro-
voke a compensatory increment of FGF21 according 
to the preserved (to some extent) sensitivity to this 
regulatory protein.

In our study, we also observed a higher incidence 
of hypertension in patients with MACS. Our results are 
in agreement with several recent studies that showed 
increased prevalence of hypertension in patients 
with MACS compared with NFAIs [62, 63]. The cause 
of hypertension is the increased activity of the renin 
angiotensin aldosterone system (RAAS), which results 
in sodium retention and increased plasma volume. 
Visceral obesity may also contribute to the develop-
ment of hypertension. The role of FGF21 in the patho-
genesis of hypertension in patients with MACS is not 
entirely clear. In animal experimental studies, FGF21 
directly and dose-dependently increased angioten-
sin-converting enzyme 2 (ACE2) and angiotensin 1–7 
(ANG-[1–7]) production in adipocytes and renal cells, 
and consequently protected animals against ANG II-in-
duced hypertension [64]. However, clinical studies have 
shown that the concentration of FGF21 in peripheral 
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blood in hypertensive patients is significantly higher, 
and despite high circulating FGF21 levels a beneficial 
effect on blood pressure does not occur [50].

Apart from observed in our study correlation be-
tween FGF21 concentration and GC excess, we have 
also shown associations between FGF21 concentration 
and adenoma size. FGF/FGFRs signalling has been 
shown to play a role in both early adrenal develop-
ment and later adrenal cortical neoplasia [65, 66]. 
Recent experimental animal studies have shown that 
FGF21 is involved in adrenal growth and hypertrophy 
[28]. Furthermore, increased expression of the FGF21 
gene has been demonstrated in both adrenocortical ad-
enoma and carcinoma, with significant up-regulation 
in advanced forms of cancer [66]. Higher circulating 
levels of FGF21 have been documented in differ-
ent neoplasms [67–69]. These observations suggest 
that FGF21 promotes tumour development. To date, 
researchers have focused primarily on elucidating 
the role of FGF/FGFRs signalling in the pathogenesis 
of adrenocortical carcinoma [66], but the importance 
of this pathway in benign adrenocortical tumours 
remains largely unexplored. Because ACA has FGFRs, 
it could be speculated that FGF21 affects adrenal tu-
mourigenesis [66]. 

Conclusions 

Higher levels of FGF21 in adrenal tumours with mild 
autonomous cortisol secretion when compared with 
non-functioning adrenocortical adenomas represent 
another pathophysiological link related to chronic 
glucocorticoid excess. 
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