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levothyroxine (LT4) monotherapy as the therapy of 
choice for hypothyroidism [5]. However, its use poses 
clinical difficulties and is still a topic of lively debate.

According to data from the recent international 
survey: Treatment of Hypothyroidism in Europe by 
Specialists (THESIS), between 14.2% and 76.4% of 
respondents consider combination therapy with LT4 
and liothyronine (LT3) in patients with persistent symp-
toms of hypothyroidism despite biochemical euthyroid-
ism on LT4 treatment [6–11]. Importantly, LT3 should 
not be used during pregnancy. Moreover, there is no 
evidence that combination therapy is more beneficial 
than LT4, so it is not recommended [12]. Importantly, 
the most common persistent symptoms of hypothy-
roidism are nonspecific and can be caused by both 
individual and external factors [6, 13]. Therefore, a key 
question is whether the failures of LT4 monotherapy are 
because it is not an appropriate treatment for all patients 
or if it is due to errors made during its use. Solving this 
is essential because the data on patient dissatisfaction 
with LT4 monotherapy is alarming. In the latest survey 
conducted by the British Thyroid Foundation, as many 
as 77.6% of people taking LT4 assessed their quality of 
life as low and were dissatisfied with the therapy [14]. 
In turn, a meta-analysis of randomized clinical trials 

Introduction

Hypothyroidism is the most common endocrinopa-
thy encountered in daily clinical practice, usually 
with irreversible and chronic nature, requiring life-
long replacement therapy. Its risk increases with age 
and female gender, and it is observed in 4 to 14% of 
the population, depending on the geographical area, 
mostly in the subclinical stage [1, 2]. In iodine-sufficient 
regions, the most common cause of primary thyroid 
dysfunction is Hashimoto’s thyroiditis (HT) [2]. It is 
characterized by an autoimmune background, which 
is expressed by the presence of antithyroid antibodies 
and a typical ultrasound picture, which can coexist 
in the initial stage with euthyroidism, but often leads 
to hypothyroidism. Other causes of hypothyroidism 
include iodine deficiency, thyroidectomy, radioiodine 
therapy, medication, congenital, thyroid hormone 
resistance, infiltrative (Riedel’s thyroiditis, amyloid, 
hemochromatosis, scleroderma), or secondary (hy-
pothalamic or pituitary disease) [3]. For more than 
40 years, synthetic thyroxine sodium has been used 
instead of animal thyroid extracts as the most stable, 
safe, and effective hormone replacement therapy [4]. All 
guidelines from major endocrine societies recommend 
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ence of persistent symptoms despite euthyroidism after 
LT4 replacement, particularly in HT. Our goal was to 
gain insight into their causes and develop suggestions 
for further management of hypothyroidism based 
on the latest reports. We hypothesize that a complex 
interaction between genetic susceptibility and environ-
mental factors and epigenetic modifications may affect 
the absorption, transport, metabolism, and function of 
thyroid hormones through dysfunctions of the immune 
system (Fig. 1). Considering the increasing incidence 
of hypothyroidism and its impact on the quality of 
life, their analysis is necessary to develop optimal 
therapy that helps alleviate symptoms but also avoids 
overtreatment.

The importance of autoimmunity 
in the pathogenesis of signs and symptoms 
of HT

In chronic autoimmune thyroiditis, abnormalities in 
both cellular and humoral immunity are observed. 
Intensive research in recent years has shown that not 
only the predominance of Th1/Th2 lymphocytes, but 
also new subgroups of T cells, such as follicular helper 
T (Tfh) cells, T helper 17 (Th17), T helper 22 (Th22), 
and related cytokines, are involved in the pathogenesis 
of autoimmune thyroiditis [22, 23]. Moreover, excess 
pro-inflammatory cytokines originating from lympho-
cytic infiltration within thyroid tissue are detected in 
serum, which may have implications for the function of 
other systems and well-being [24–26]. Crucially, there 
is growing evidence that immune cells are involved in 
a bidirectional interaction with the balance of the hypo-
thalamic-pituitary-thyroid axis [21]. On the one hand, 
various transporters for thyroid hormones, enzymes re-
sponsible for their conversion, and their receptors have 
been shown to be expressed in immune cells [27]. On 
the other hand, immune cells probably play a role in 
regulating thyroid hormone activity, independently 
of the pituitary gland [28]. Thus, immune dysfunction 
appears to be important for the effectiveness of hypo-
thyroidism treatment.

The most characteristic sign of loss of tolerance to 
self-antigens in HT is the presence of autoantibodies 
against thyroglobulin (aTG, anti-thyroglobulin antibod-
ies) and/or thyroid peroxidase (aTPO, thyroid peroxi-
dase antibodies) [29]. In recent years, large systematic 
reviews of studies and meta-analyses have been con-
ducted to assess their association with the persistence 
of non-specific symptoms despite euthyroidism. They 
suggest that the presence of anxiety and depression [30], 
as well as a general reduction in quality of life [31], are 
related to autoimmunity, regardless of thyroid hormone 
levels. Previous reports on a large cohort of euthyroid 

conducted by Feller et al. involving 2192 adult patients 
with subclinical hypothyroidism found that appropriate 
LT4 therapy was not associated with a benefit in terms 
of overall quality of life or reduction in thyroid symp-
toms [15]. Such results raise doubts about the validity 
of implementing hormone replacement in subclinical 
stages and prompt a revision of therapeutic goals.

Currently the LT4 dose is most often determined 
by thyroid-stymulating hormone (TSH) levels and de-
pends on a number of factors, such as age, gender, cause 
of hypothyroidism, clinical picture, and comorbidities 
[16]. Individualization of LT4 treatment is important in 
specific groups of patients, which include pregnancy, 
pediatric populations, patients with differentiated 
thyroid cancer, elderly patients with cardiovascular 
disease or osteoporosis, and patients with severe medi-
cal conditions [4]. However, a growing body of data 
suggests that a better indicator of thyroid hormonal 
balance than TSH concentration is the assessment of 
free thyroid hormones: free triiodothyronine (FT3) 
and free thyroxine (FT4). A recent systematic review 
by Fitzgerald et al. found that FT4 is more strongly 
associated with clinical parameters than TSH levels 
[17]. Similarly, Cui et al. found that lower FT3 levels 
were associated with worsened quality of life in HT 
patients treated with LT4, regardless of TSH levels 
[18]. Moreover, the FT4/FT3 ratio was recently shown 
to be associated with coronary microvessel dysfunction 
in euthyroid patients, which may confirm its impor-
tance for organ damage [19]. Therefore, it seems that 
evaluation of free thyroid hormones in addition to 
TSH alone may become equally important in setting 
therapeutic targets for hypothyroidism, which requires 
further research.

Conversely, it is increasingly pointed out that 
the resolution of signs and symptoms associated 
with hypothyroidism is more important than biochemi-
cal tests in assessing the effectiveness of treatment [4]. 
An example is the assessment of the thyroid-related 
quality of life patient-reported outcome measure (Thy-
PRO) before and after the implementation of LT4 [20]. 
Importantly, differences in the clinical manifestation 
of hypothyroidism probably depend on the different 
local expression of proteins responsible for the transport 
of thyroid hormones into the cell, their metabolism, 
and action through receptors mediating genomic 
and non-genomic effects [21]. They depend on inter-
actions between genetic, environmental, and epigen-
etic factors, the understanding of which may change 
the approach to hypothyroidism treatment toward 
personalization. 

This review examines factors contributing to the dif-
ficulty in managing LT4, including both the problems 
in achieving normal thyroid biochemistry and the pres-
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antibody titers with hypertension [32] and even in-
creased risk of mortality [33]. In fact, elevated aTPO 
titers have been correlated with atherosclerosis [34], 
myocardial dysfunction [35], and cardiovascular neu-
ropathy [36]. However, the findings about the role of 
anti-thyroid antibodies are not consistent. For example, 
it was observed that community-dwelling older women 
seropositive for aTG and aTPO were less frail than 
seronegative women, regardless of thyroid function 
status [37]. Therefore, further studies are needed to 
find both the titer and duration of exposure to antithy-
roid antibodies and other markers of immune activity 
that may have a pathogenic effect.

Interestingly, Leyhle et al. showed that attention def-
icits in euthyroid patients with HT were associated with 
decreased gray matter density in the left inferior frontal 
gyrus, probably due to as yet unknown antibodies af-
fecting the nervous system [38]. So far, isolated cases 
of Hashimoto’s encephalopathy have been described, 
covering a wide spectrum of neurological symptoms 
(convulsions, psychiatric symptoms, focal neurologi-
cal deficits, cerebellar ataxia) [39, 40]. It was observed 
in patients with chronic lymphocytic thyroiditis after 
exclusion of other possible causes of encephalopathy 
and resolved with high doses of corticosteroids [39]. 
However, the exact pathogenesis of neurological symp-
toms in HT patients is still unknown.

The above reports indicate a close relationship be-
tween HT-related immune dysfunction and the pres-
ence of signs and symptoms in general well-being, 
and the cardiovascular and nervous systems regard-
less of thyroid hormone levels. It is suspected that 

they may result from systemic inflammation and oxi-
dative stress mediated by the excessive autoimmu-
nity observed in HT patients [41]. Accordingly, in 
experimental studies immunomodulatory agents like 
transforming growth factor beta (TGF-b) [42], histone 
deacetylase-specific inhibitor 6, which inhibit Th17 [43], 
and the oxidative stress-reducing drug edaravone [44] 
are being explored as possible therapeutic options to 
reduce autoimmunity in thyroid disease. Although fur-
ther research is needed, there are many indications that 
immune dysfunction may play a significant role both 
in the difficulty of achieving biochemical euthyroidism 
and the persistence of symptoms despite adequate 
replacement doses of LT4.

Factors contributing to difficulty 
in achieving TSH target levels

Difficulties with LT4 treatment include situations in 
which problems are observed in achieving normal 
thyroid biochemistry, when supra-physiological doses 
of the hormone are required (at a dose greater than 
1.6–1.8 μg/kg per day), or thyroid hormone require-
ments suddenly increase [45]. 

Poor compliance with therapy
According to the CONTROL Surveillance Project study 
involving 925 hypothyroid patients, more than 20% 
of patients reported taking LT4 at breakfast or less 
than the recommended 30 minutes before eating. In 
addition, more than 50% of respondents admitted to 
using dietary supplements (mainly calcium and iron) 
or eating foods rich in fiber, iodine, or soy, which can 

Figure 1. Factors and mechanisms hypothesized to be responsible for persistent symptoms in patients with hypothyroidism. 
aTPO — thyroid paroxidase antibody; aTG — antithyroglobulin antibody; Th — T-helper
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cause malabsorption of LT4 [45]. For those who experi-
ence problems following the recommendations related 
to taking LT4 in the morning, it has been shown that tak-
ing the hormone before bedtime can improve hormonal 
balance [46]. An alternative treatment option may also 
be the use of LT4 in the form of a soft gel or liquid, 
which may allow for a shorter interval between hor-
mone administration and food intake, and may even 
improve quality of life [47, 48]. 

Absorption defects
Both a disturbance in pH in the stomach, where LT4 
dissolves, or in the small intestine, where it is absorbed, 
may be associated with a decrease in the absorption of 
the hormone [49]. Among the most commonly reported 
conditions that could affect hormone absorption in hy-
pothyroid patients on LT4, gastroesophageal reflux 
disease (33.8% of patients), irritable bowel syndrome 
(9.7%), and lactose intolerance (7.8%) were reported 
[45]. Others include conditions following gastric bypass 
or intestinal resection, Helicobacter pylori infection, in-
flammatory bowel disease, or gastroparesis [45]. The in-
creased risk of autoimmune disorders in HT patients 
such as celiac disease or autoimmune atrophic gastritis 
is also associated with impaired absorption of LT4, as 
well as with micronutrient deficiencies, which may 
disrupt thyroid hormone function [45]. According to 
experts, in cases of malabsorption the liquid formulation 
of LT4 should be preferred because it is more effective 
than the tablet formulation [50]. LT4 absorption may 
also be improved by the addition of vitamin C [51].

Drugs that increase the need for thyroid 
hormones
There are many medications that can reduce the effec-
tiveness of LT4. Table 1 shows the most common medica-
tions and mechanisms leading to increased demand for 
thyroid hormones. These include impaired absorption, 
increased concentrations of thyroid hormone binding 
proteins resulting in decreased concentrations of free 
thyroid hormones, increased microsomal enzyme activ-
ity leading to increased thyroxine catabolism, inhibition 
of thyroid hormone synthesis or release and increased 
autoimmune processes [52–54].

Noteworthy, the increasing use of immune check-
point inhibitors — cytotoxic T cell antigen 4 antibodies 
(anti-CTLA-4), programmed death receptor 1 antibod-
ies (anti-PD1) — can result in both hyperthyroidism 
and hypothyroidism. Their inclusion in patients with 
autoimmune thyroiditis may contribute to a change in 
LT4 dosage, conversion from HT to Graves-Basedow 
disease, or independently induce hypopituitarism [55]. 
Therefore, in these patients, vigilance and comprehen-
sive evaluation are particularly important.

Misdiagnosis
If the clinical presentation is not consistent with the re-
sults of hormonal tests, the reason may also be a mis-
diagnosis before the implementation of LT4 or the ap-
pearance of a second condition independent of the first 
diagnosed hypothyroidism. In central hypothyroidism, 
TSH levels are reduced or normal, with low levels 
of FT4. The cause may be pituitary or hypothalamic 
dysfunction due to pituitary adenoma, head trauma, 
Sheehan’s syndrome, surgery, radiation therapy, 
and genetic and infiltrative diseases [16]. Importantly, 
dysfunction of the hypothalamic-pituitary-thyroid 
axis has been described, resulting from direct pituitary 
or hypothalamic damage caused by severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) [56]. 
Therefore, the occurrence of this infection in a person 
with coexisting primary hypothyroidism may divert 
earlier LT4 requirements. In addition, it has been sug-
gested that 2019 coronavirus disease (COVID-19) may 
cause direct infection of the thyroid gland and a storm 
of cytokines, which may exacerbate autoimmune dis-
orders [57]. However, data on thyroid dysfunction after 
COVID-19 are still limited [57, 58]. Interestingly, a case 
of conversion from HT to Graves-Basedow’s disease 
after COVID-19 vaccination in patients with type 1 
diabetes has been described [59]. Such reports show 
the need for special alertness and monitoring of patients 
for progression of pre-existing thyroid disease or new 
thyroid disease in patients both after SARS-COV2 infec-
tion and after vaccination for COVID-19. 

Another reason for inconsistent test results may be 
thyroid hormone resistance syndrome, which occurs in 
about 1:40,000 people and, as reports suggest, is more 
common in patients with autoimmune thyroiditis [60]. 
Elevated levels of free thyroid hormones with normal or 
elevated TSH levels and goiter may suggest a mutation 
within the gene encoding the thyroid hormone receptor 
beta (TRb). In turn, with thyroid hormone receptor alfa 
(TRa) gene mutations, normal TSH levels, reduced FT4 
levels, and increased FT3 levels are observed. The clini-
cal picture may coexist with features of both hypothy-
roidism and hyperthyroidism, reflecting the different 
expression of individual thyroid receptor isoforms in 
the organs and the variability in type of genetic defect. 
Patients may require no treatment or the use of higher 
than physiological doses of LT4, LT3, or a thyroid hor-
mone analogue, 3,3,5-triiodothyroacetic acid (Triac) 
[61–63]. Therefore, if the diagnosis is uncertain, pedi-
gree analysis and genetic diagnosis may be indicated.

Laboratory interferences 
If TSH levels are inadequate in relation to the clinical 
presentation, it is also worth considering the pres-
ence of factors that can interfere with immunoas-
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says. The cause of falsely elevated TSH results can be 
the presence of macro TSH, heterophilic antibodies, 
including human animal antibodies, rheumatoid 
factor and heterophilic antibodies of unknown anti-
gen exposure, and antibodies to ruthenium [64, 65]. 
The incidence of laboratory abnormalities associated 
with them is estimated to be around 0.4 to 0.5% [66]. 
Importantly, they can lead to both erroneously in-
flated and underestimated TSH levels. People with 
rheumatoid arthritis, undergoing immunotherapy, 
or exposed to animals for long periods of time are 
particularly susceptible to abnormalities in laboratory 
evaluation [67]. Therefore, if there are inconsistencies 
between the clinical picture and the test results, it is 
important to repeat them and inform the laboratory. 
Possible methods to eliminate the error are the use of 
different antibody pairs, incubation times, dilutions, 
or the use of polyethylene glycol (PEG) or the addi-

tion of blocking agents that remove the interfering 
antibody [68, 69]. 

An increasingly common, external cause of abnor-
mal TSH determinations, as well as other hormones, 
may be biotin supplementation. Its use can lead to false 
positive or negative results. Therefore, to avoid this, 
it should be recommended, if possible, to stop biotin 
supplementation at least 48–72 hours before the blood 
test, or to use appropriate laboratory diagnostic meth-
ods [70, 71].

Causes of persistence of thyroid-related 
symptoms despite adequate LT4 
substitution

Undiagnosed comorbidities
If nonspecific symptoms persist despite adequate LT4 
dose and laboratory euthyroidism, it is important to 

Table 1. Mechanisms and drugs responsible for increased demand for thyroid hormones [4, 52–54]

Mechanisms responsible for 
the reduced effectiveness of LT4 Mechanism specific to drug group Examples of drugs

Decrease in LT4 absorption in 
the gastrointestinal tract

Drugs that increase pH in the digestive tract Proton pump inhibitors, histamine receptor blockers, 
antacids

Drugs that form insoluble chelates with LT4 Cholestyramine, colestipol, sucralfate, aluminum, ferrous, 
calcium or magnesium salts, simethicone, orlistat

Drugs that modify intestinal motility Laxatives

Alteration in transport 

of thyroid hormones

Increase production of 
thyroid hormone-binding proteins, which 

is associated with a decrease in FT4 
and an increase in TSH hormone levels

Oral contraception or oral estrogen replacement 
therapy, tamoxifen or other selective estrogen 

receptor modulators, clofibrate, methadone, mitotane, 
fluorouracil

Alteration in metabolism or 
excretion of thyroid hormones

Increase the activity of liver microsomal 
enzymes that is associated with increased 

catabolism of thyroxine

Carbamazepine, phenobarbital, phenytoin, valproate, 
rifampicin, antiretroviral drugs, sertraline

Inhibition of the synthesis and/ or 
release of thyroid hormones

Decrease in iodide transport, iodide oxidation 
and organification and thyroid vascularization

Iodine and iodine-containing drugs (amiodarone, contrast 
agents, radioiodine-based cancer therapies etc.)

Increase intrathyroidal iodine, inhibits 
iodotyrosine coupling and blocks the release 

of thyroid hormones

Lithium

Aminoglutethimide

Sulfonamides

Tolbutamide

Blocking peroxidase activity in the coupling 
reaction Tetracyclines

Immune dysfunction

Thyroid autoimmunity, disruption of 
thyroid vascularization, inhibition of iodine 

organification, inhibition of peroxidase, 
blocking iodine uptake  

Tyrosine kinase inhibitors

Stimulation of autoimmunity

Interleukin 2

Alemtuzumab

Thalidomide analogues

Interferon alpha

Hypophysitis with central hypothyroidism 
and/or thyroiditis

Anti-CTLA-4 (ipilimumab)

Anti-PD1 (pembrolizumab, nivolumab)

LT4 — levothyroxine; FT4 — free thyroxine; TSH — thyroid-stimulating hormone; CTLA-4 — cytotoxic T cell antigen 4; PD1 — programmed death receptor 1
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rule out other undiagnosed conditions that may cause 
them. According to data from a cross-sectional study 
by Sharma et al., the presence of a second autoim-
mune disease can occur in up to 27.8% of HT patients, 
with the most common being type 1 diabetes (9.5%), 
celiac disease (9.5%), and rheumatoid arthritis (2.8%) 
[72]. Importantly, if an increase in LT4 dose causes 
general fatigue, muscle aches, hypotension, or loss of 
appetite or weight, the cause may be adrenal insuf-
ficiency. Increasing the dose of the LT4 can exacerbate 
symptoms of hypocortisolemia, as it leads to increased 
breakdown of cortisol in the liver. Notably, patients 
undergoing anticancer treatment may be at higher 
risk for primary hypothyroidism and secondary adre-
nal insufficiency, which can occur even months after 
withdrawal of immune checkpoint inhibitors [73, 74]. 
Another cause of adrenal insufficiency, both secondary 
and primary in nature, may be infection with COVID-19 
[75, 76]. It may have an autoimmune or iatrogenic basis 
resulting from withdrawal of long-term treatment with 
synthetic glucocorticoids [77]. 

Other diseases reported to be more common in pa-
tients with hypothyroidism are obstructive sleep apnea 
[78] and depression [79, 80]. They can similarly manifest 
as feelings of fatigue or impaired concentration and cause 
diagnostic difficulty. It has been proven that the sever-
ity of depression does not change despite the use of 
an adequate dose of LT4 in people with subclinical hy-
pothyroidism [81]. In addition, awareness of chronic 
diagnosis may also cause low self-esteem of health in 
patients with hypothyroidism [82]. Therefore, account-
ing for psychological factors can also be significant in 
the search for the cause of persistent symptoms.

Similarly, polycystic ovary syndrome, which is close-
ly related to insulin resistance, often occurs in hypothy-
roidism and causes nonspecific symptoms such as diffi-
cult weight loss or lethargy after meals [83]. Remarkably, 
in a prospective study, levothyroxine substitution in pa-
tients with overt or subclinical hypothyroidism did not 
lead to resolution of insulin resistance [84]. Moreover, 
another study found that insulin resistance impairs 
levothyroxine and hypothalamic-pituitary-thyroid 
axis activity [85]. This is another argument in favor of 
excluding undiagnosed diseases or, if detected, treating 
them first instead of escalating the LT4 dose.

Environmental factors
So far, many environmental factors have been described 
that can affect the effectiveness of LT4 substitution, 
presumably by affecting the severity of autoimmunity 
and the transport, metabolism, excretion, or action 
of thyroid hormones. As shown, even if TSH levels 
are normal, several factors can interfere with the me-
tabolism of FT4 to FT3, directing conversion to inactive 

reverse T3 (rT3) [86]. These include exposure to chemi-
cal pollutants, chronic stress, malnutrition, or chronic 
inflammation [87]. 

Diet  
An important factor affecting the balance within the hy-
pothalamic–pituitary–thyroid axis is diet. To date, many 
studies have focused on evaluating the relationship 
between thyroid dysfunction and gluten consumption, 
which is likely based on a molecular mimicry mechanism 
between intestinal and thyroid tissue transglutaminase 
[88]. However, it has not been shown to be beneficial 
for gluten-tolerant people and may even be associated 
with the risk of nutritional deficiencies. Instead, it is 
suggested that patients with hypothyroidism should 
be recommended an anti-inflammatory diet, rich in 
vitamins, polyphenols, antioxidants, and omega-3 fatty 
acids and low in animal fats [89]. 

Gut microbiota
A growing number of reports indicate that changes 
in the gut microbiome affect thyroid function both 
by influencing the immune system and the absorp-
tion of micronutrients, which are essential for normal 
thyroid hormone metabolism and function [90–92]. 
The gut microbiota has been shown to differ in HT 
patients compared to controls, which is related to FT3 
and FT4 concentrations [93]. Studies in animal models 
suggest that a healthy microbiome can prevent thy-
roid hormone fluctuations and even reduce the need 
for LT4 supplementation [91]. However, there is still 
no evidence supporting the routine use of probiotics, 
prebiotics, or synbiotics in patients with primary hypo-
thyroidism [92, 94]. Therefore, further well-designed 
studies are needed to determine the importance of 
probiotics as adjunctive therapy in thyroid disease 
and their relevance in assessing quality of life.

Physical activity 
In a large sample using the National Health and Nutrition 
Examination Survey (NHANES) data set, increased 
physical activity was associated with lower levels of 
inflammatory cytokines — C-reactive protein (CRP) 
and fibrinogen — and lower levels of FT4 and TSH 
among men and women [95]. Such results suggest that 
physical activity may suppress the hypothalamic-pitu-
itary-thyroid axis. However, in a population-based co-
hort study, physical activity was not confirmed to affect 
endogenous TSH or FT4 secretion [96]. Nevertheless, 
it has been shown to have a positive effect on quality 
of life and reduce feelings of fatigue in patients during 
and after thyroid cancer treatment [97]. The probable 
cause is the impact of physical activity on reducing 
inflammation and oxidative stress [98]. In fact, a ran-
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domized clinical trial conducted on a small group of 
22 women with subclinical hypothyroidism showed 
that 16 weeks of aerobic exercise (lasting 60 minutes 3 
times a week) significantly improved quality of life [99]. 
Therefore, it appears that its recommendation may be 
beneficial for patients with persistent symptoms despite 
adequate LT4 substitution.

Endocrine disruptors
A meta-analysis conducted by Kim et al. showed a sig-
nificant relationship between diethylhexyl phthalate, 
a so-called plasticizer widely used in industrial products, 
and disruption of the hypothalamic-pituitary-thyroid 
axis [100]. In turn, in the Korean National Environmental 
Health Survey, increased urinary excretion of bisphenol 
A was significantly negatively correlated with serum FT3 
and FT4 concentrations in overweight subjects [101]. 
Moreover, in a cross-sectional study, there was a correla-
tion between increased urinary excretion of bisphenol 
C (a bisphenol A analog with a thyroxine-like structure) 
and decreased thyroid volume and elevated TSH levels 
(> 2.5) in young women without autoimmune thyroid-
itis [102]. The reason for the observed correlations is 
suspected to be the effect of bisphenol A analogs on both 
thyroxine-binding globulin (TBG) and thyroid hormone 
receptors (thyroid hormone receptors — TRa and TRb) 
[103]. However, data on the relationship between ex-
posure to endocrine disruptors and the persistence of 
complaints despite adequate LT4 dosing are still lacking. 
Therefore, further studies are needed to better under-
stand these relationships.

Selenium
Selenium is a component of enzymes, selenoproteins, 
such as glutathione peroxidase and iodothyronine de-
iodinase, responsible for the production and conversion 
of thyroid hormones. Its deficiency can lead to oxidative 
stress leading to thyroid cell damage, autoimmunity, 
and activation of fibrotic processes [104]. A meta-analysis 
of studies by Wichman et al. showed that selenium 
supplementation was associated with a significant re-
duction in antithyroid antibody concentrations after just 
3 months [105]. However, results to date are conflicting, 
and there is still insufficient evidence of clinical benefit 
from selenium supplementation in hypothyroidism 
[106, 107]. Nevertheless, a survey of European Thyroid 
Association members found that about half of physicians 
recommend selenium supplementation in HT to reduce 
circulating antithyroid autoantibodies, slow the rise in 
TSH levels, and improve quality of life [108]. 

Iron
Iron is a component of heme, essential for the activation 
of thyroid peroxidase, which is crucial in the iodination 

of thyroglobulin and the coupling of iodotyrosine mol-
ecules [91, 104]. A meta-analysis conducted by Luo et al. 
showed that iron deficiency in women of reproductive 
age significantly increases the risk of aTPO positivity, 
and in pregnant women it is associated with elevated 
TSH and reduced FT4 levels [109]. Similar conclusions 
were reached in a recent meta-analysis by Garofalo 
et al. in which iron-deficient, non-pregnant women 
showed significantly lower levels of FT4 and FT3 [110]. 
Importantly, iron deficiency can result from malab-
sorption due to autoimmune gastritis or celiac disease, 
non-celiac wheat sensitivity, and dysbiosis, the risk of 
which is higher in HT patients [91]. On the other hand, 
already latent anemia can cause nonspecific symptoms 
that are easily linked to hypothyroidism. Therefore, 
the relationship between iron deficiency and the pres-
ence of nonspecific symptoms in patients with hypo-
thyroidism are bilateral [111].

Magnesium
Magnesium affects the maintenance of energy bal-
ance in the body and additionally regulates iodine 
uptake [112]. Wang et al. in a cross-sectional study 
involving 1257 patients showed that severely low se-
rum magnesium levels (≤ 0.55 mmol/L) are associated 
with positive aTG antibodies and the presence of HT 
[113]. Magnesium deficiency can manifest as cognitive 
impairment, musculoskeletal complaints, or hair loss, 
which may correspond to non-specific symptoms as-
sociated with hypothyroidism [112]. It was postulated 
that biochemical abnormalities such as serum selenium 
levels below 80 ug/L, magnesium below 0.9 mmol/L, 
and coenzyme Q10 below 800 ug/L correlate with 
ultrasound features of autoimmune thyroiditis (hy-
poechogenicity and impaired perfusion), which can be 
reversed after 14–18 months of adequate supplementa-
tion [114]. However, the results of studies to date are not 
consistent, and there is a lack of evidence for the efficacy 
of such management.

Zinc
Zinc is a trace element that promotes the synthesis 
of hypothalamic thyrotropin-releasing hormone (TRH) 
and TSH, regulates the expression of thyroid hormones, 
is required for deiodinase to convert T4 to T3, and is 
an important component of the T3 receptor [115]. In hy-
pothyroidism, lower serum zinc levels and higher phos-
phorus levels were observed [116]. A recently published 
systematic review of randomized controlled trials sug-
gests that zinc supplementation in overweight or obese 
and hypothyroid patients increases FT3 levels [117]. 
The literature also reports normalization of TSH levels 
after 6 months of zinc supplementation in patients 
with Down syndrome, zinc deficiency, and subclini-
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cal hypothyroidism [118]. However, due to the observed 
benefits only in selected groups of patients and the risk 
of overdose, routine zinc supplementation is not recom-
mended in patients with hypothyroidism [115]. 

Vitamin D
Vitamin D deficiency has been shown to be more 
frequent in women with autoimmune thyroiditis 
and primary hypothyroidism than in the general 
population [119]. The likely mechanism responsible for 
this relationship is the effect of vitamin D deficiency 
on autoimmunity through activation of inflamma-
tion [120]. Importantly, a meta-analysis of previous 
studies has shown that vitamin D supplementation 
significantly reduces aTPO in patients with HT [121]. 
Given the pleiotropic beneficial effects of vitamin D on 
the functioning of many organs, its deficiency should 
be appropriately supplemented, especially in people 
with autoimmune diseases [122, 123].

Vitamin B12
The presence of HT is associated with a higher risk 
of other autoimmune diseases, including perni-
cious anemia and associated vitamin B12 deficiency, 
which may be associated with non-specific symptoms 
even on adequate LT4 substitution [124]. Vitamin B12 
deficiency increases homocysteine levels, contribut-
ing to the comorbidity of vascular disease, cognitive 
decline, and increased risk of neuropsychiatric disease 
[125]. Moreover, vitamin B12 is essential for the normal 
function of the immune system, maintaining a normal 
CD4/CD8 ratio, or restoring the function of the comple-
ment system and enhancing humoral immunity by 
restoring immunoglobulin [126]. However, there is still 
a lack of data explaining the relationship between vita-
min B12 deficiency and the persistence of complaints 
in HT patients despite euthyroidism.

Metformin
Subclinical hypothyroidism has been shown to 
increase insulin resistance in normoglycemic indi-
viduals [127], while positive aTPO antibodies have 
been associated with the presence of elevated fasting 
insulin levels [128] and higher homeostatic model as-
sessment — insulin resistance (HOMA-IR) [129]. One 
recently published meta-analysis showed that met-
formin significantly reduces insulin resistance in 
patients with HT and subclinical hypothyroidism, as 
well as lowering the levels of aTPO, aTG, and TSH 
[130]. Therefore, the implementation of metformin 
in people with hypothyroidism and co-occurring 
insulin resistance most likely does not only eliminate 
the symptoms of insulin imbalance, but also reduces 
the risk of autoimmunity.

Myo-inositol
A growing body of evidence points to the beneficial 
effects of myo-inositol, a precursor of the phosphati-
dylinositol cycle, on thyroid function [131]. It probably 
increases the sensitivity of thyrocytes to TSH, affects 
iodination processes [132], and may be effective in pro-
tecting thyroid cells from the effects of pro-inflammato-
ry cytokines [133]. Its deficiency may be associated with 
impairment of the inositol-dependent TSH signaling 
branch, resulting in thyrocyte resistance to TSH [132]. 
A randomized clinical trial involving 168 HT patients 
with TSH levels between 3 and 6 µIU/mL showed that 
administration of myo-inositol and selenium (at a dose 
of 600 mg myo-inositol and 83 μg selenium contained 
in 16.6 mg of L-selenomethionine) compared to the ad-
ministration of selenium alone at a dose of 83 μg (con-
tained in 16.6 mg of L-selenomethionine) for 6 months 
significantly reduced TSH levels and antithyroid anti-
body titers, and improved mood [134]. Similar results 
were obtained in a multicenter study involving 148 pre-
menopausal women with subclinical hypothyroidism, 
in whom 6-month supplementation with myo-inositol 
600 mg and selenium 83 ug was associated with sig-
nificant reductions in TSH, aTPO, and aTG antibodies, 
total cholesterol, return of regular menstrual cycles, 
and fewer symptoms associated with hypothyroidism 
such as: feelings of fatigue, difficulty with weight loss, 
or feeling cold [135]. However, these data still need to 
be confirmed in studies conducted on larger groups 
of patients.

Ashwagandha [Withania somnifera (L.) Dunal]
In experimental studies in a rat model of hypothy-
roidism, ashwagandha restored T3 and T4 levels 
and prevented hypothyroidism complications in 
the nervous system, including oxidative stress 
and neuroinflammation [136]. A prospective, random-
ized, double-blind, single-center, placebo-controlled 
study conducted at Sudbhawana Hospital in Varanasi, 
India, showed that Ashwagandha root extract (600 mg 
daily) is beneficial in normalizing thyroid function 
in patients with subclinical hypothyroidism [137]. 
Other randomized studies, also carried out on 
small groups, have indicated efficacy in improving 
the quality of sleep in patients with insomnia [138], 
reducing stress and anxiety [139], sexual well-being, 
increasing serum testosterone levels in adult men 
[140], and improving female sexual health [141]. It 
probably relieves these conditions mainly through hy-
pothalamic-pituitary-adrenal modulation as well as 
through GABAergic and serotonergic pathways [142]. 
However, there is still a lack of data on the safety of 
taking ashwagandha extract and its effectiveness in 
large-group clinical trials.
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Genetic factors
A prospective observational study involving 353 
patients showed that thyroid hormone conversion 
efficiency is individually variable, and LT4 dose esca-
lation may have limited success in adequately raising 
FT3 [143]. Previous reports suggest an association with 
polymorphisms of genes such as proteins that transport 
thyroid hormones into the cell, i.e., monocarboxylate 
transporters (MCT8 or MCT10) [144], organic anion 
transporter polypeptide 1C1 (OATP1C1) [145], a protein 
that determines the conversion of the hormone FT4 to 
FT3, i.e. deiodinase type 2 (DIO2) [146], and the thy-
roid hormone receptor gene (THRa) [147]. Inherited 
defects in thyroid hormone metabolism include also 
selenocysteine insertion sequence-binding protein 2 
(SECISBP2), sec-specific tRNA (TRU-TCA1-1), and de-
iodinase type-1 (DIO1) mutations [148, 149]. We can 
suspect them when we observe mostly low FT3, high 
rT3, high or normal FT4, and normal or elevated TSH 
[149]. Mutations, depending on the genetic variant, can 
be accompanied by complaints about skeletal structure 
and growth, muscle strength, and neurological or meta-
bolic dysfunction [148]. An association between thyro-
globulin (TG) [150] or thyroid peroxidase (TPO) [151] 
polymorphisms and HT severity and prognosis has also 
been shown. However, their link with the persistence 
of residual symptoms in patients with hypothyroidism 
despite LT4 treatment is not clear.

The best-studied polymorphism responsible for 
differences in response to LT4 is Thr92Ala DIO2 
(rs225014). It occurs in up to one-third of the popula-
tion and is associated with reduced amounts of active 
FT3 hormone, particularly in the central nervous 
system and skeletal muscle [152]. Meta-analyses of 
previous studies indicate its association with a higher 
risk of developing type 2 diabetes [153] and higher 
body weight [154]. In turn, a study in cellular and ani-
mal models indicates that the Thr92Ala D2 polymor-
phism is associated with endoplasmic reticulum stress, 
lower FT3 levels, and nervous system dysfunction. 
Importantly, its presence was associated with slug-
gishness in mice, which resolved after FT3 substitution 
[155]. A randomized, double-blind study of a small 
group of 45 patients showed that the presence of 
the Thr92Ala DIO2 polymorphism with an associ-
ated polymorphism in the gene for monocarboxylate 
transporters (MCT, rs17606253) was associated with 
a preference for FT3 and FT4 combination therapy 
[144]. However, the results are conflicting [156–158], 
and combination therapy has still not been proven 
to provide more benefit than LT4 alone, so it is not 
recommended [159].

It seems that a better understanding of the impact 
of genetic diversity on the treatment of hypothyroid-

ism would make it possible to personalize therapy by 
isolating a group of patients in whom combination 
therapy would be effective in reducing persistent com-
plaints. Thus, the American Thyroid Association (ATA), 
the British Thyroid Association (BTA), and the European 
Thyroid Association (ETA) issued a consensus indicat-
ing the need for well-designed studies with adequate 
power involving the effects of deiodinase and thy-
roid hormone transporter polymorphisms including 
patients dissatisfied with current therapy and requiring 
at least 1.2 μg/kg LT4 per day [160]. 

Epigenetic factors
Despite intensive exploration, the role of epigen-
etic mechanisms including histone modifications, 
DNA methylation, and non-coding RNA molecules 
(microRNAs, long non-coding RNAs and circular 
RNAs) in the pathogenesis and course of hypothy-
roidism is still not well enough understood [48]. 
The epigenome-wide association study (EWAS) recently 
published (2021 and 2023), which identified differen-
tial methylation of genes within Krueppel-like factor 9 
(KLF9) and DOT1-like histone lysine methyltransferase 
(DOT1L), which correlated with FT3 and TSH levels 
[161, 162], suggesting the importance of these epigenetic 
factors in regulating the thyroid function. The transcrip-
tion factor KLF9 has been shown to be a T3 target gene 
that regulates multiple stress-responsive and endocrine 
signaling pathways [163], while Dot1L acts as a T3 re-
ceptor coactivator [164]. However, these mechanisms 
are still not clear.

Data on the relationship between the persistence 
of residual symptoms despite euthyroidism in hypo-
thyroid patients and epigenetic factors are limited. In 
a study conducted on a rat model, stress in early life 
was shown to have long-term effects in adults, mani-
fested by changes in the pattern of DNA methylation 
in the thyroid hormone receptor (Thr) promoter [165]. 
Importantly, such disruption was more common in 
female individuals and was associated with energy 
imbalance [165]. In humans, there are reports indicating 
that polymorphisms in genes that regulate methylation, 
such as methionine synthase reductase (MTRR), have 
also been shown to correlate with levels of DNA hypo-
methylation and a more severe course of HT [166]. It has 
also been suggested that maternal exposure to persis-
tent organic pollutants (i.e., pesticides, industrial chemi-
cal products) are associated with DNA methylation of 
genes related to thyroid hormone transport and metab-
olism in the placenta in a sex-dependent manner [167]. 
It appears that exposure to an adverse environmental 
factor can lead to long-term adverse changes in gene 
expression, even in subsequent generations. However, 
the role of epigenetic modifications in the persistence of 
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symptoms despite adequate LT4 substitution remains 
largely unknown. 

Figure 2 illustrates the complexity of interactions 
between genetic, environmental, and epigenetic fac-
tors that can affect thyroid hormone function through 
immune system dysfunction.

Table 2 summarizes the factors affecting the efficacy 
of LT4 hormone replacement, the suspected mecha-

nisms responsible for them, and the evidence from 
clinical trials conducted to date.

Suggestions for managing difficulties 
during hypothyroidism treatment

Table 3 summarizes the most common problems 
encountered during LT4 treatment discussed above 

Figure 2. The 4 structures in colors ranging from light orange to dark orange represent different stages of thyroid hormone transformation, 
on which depends the effectiveness of levothyroxine (LT4) substitution. I represents the source of thyroid hormones, which comes from 
the absorption of LT4 in the gastrointestinal tract and the synthesis of LT4 and LT3 in the thyroid gland (in a ratio of about 14:1).  
II shows the transport of thyroid hormones in peripheral blood in free form (about 0.3% T3 and 0.03% T4) and bound to proteins 
such as thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (about 99.9% T3 and T4). The main transmembrane 
proteins that transport thyroid hormones through cells are monocarboxylate transporters (MCTs) and organic anion transporters 
(OATPs). III demonstrates the metabolism of thyroid hormones in cells of various organs using deiodases: about 1/3 of T4 is converted 
to active T3, 1/3 is converted to inactive rT3, and about 1/3 is eliminated by glucuronidation and sulfation. IV illustrates the action of 
thyroid hormones in target cells: through a and b receptors and genomic mechanisms in the nucleus and through avb3 integrin isoforms 
or other TRs and non-genomic mechanisms mediated by the cell membrane and/or mitochondrial binding sites. These processes can 
be disrupted by numerous factors, which are divided into environmental (shown in green), genetic (shown in purple), and epigenetic 
(shown in pink). An important mediator in these interactions is probably the immune system. Details of the impact of each factor are 
included in the body of the review [4, 21, 24, 27, 86, 104, 156, 167–170]. aTG — anti-thyroglobulin antibodies; aTPO — thyroid 
peroxidase antibodies; CTLA-4 — cytotoxic T lymphocyte-associated antigen; DCs — dendritic cells; DIO1 — type 1 deiodinase; 
DIO2 — type 2 deiodinase; DIO3 — type 3 deiodinase; DOT1L — disruptor of telomeric silencing 1-like; IFN-g — interferon gamma; 
IL-1b — interleukin 1 beta; IL-6 — interleukin 6; IL-18 — interleukin 18; IL-21 — interleukin 21; IL-22 — interleukin 22; IL-23 
— interleukin 23; KLF9 — Krueppel-like factor 9; MCT8 — monocarboxylate transporter 8; MCT10 — monocarboxylate transporter 
10; NF-kB — nuclear factor kappa B; OATP1C — organic anion transporter polypeptide 1C1; PD-1 — programmed death receptor 1; 
rT3 — 3,3’,5’-triiodo-L-thyronine; SARS-CoV-2 — severe acute respiratory syndrome coronavirus 2; T2 — 3,5-diiodo-L-thyronine; 
T3 — 3,5,3’-triiodo-L-thyronine; T4 — thyroxine; TBG — thyroxine-binding globulin; Th1 — T helper 1; Th2 — T helper 2; Th17 
— T helper 17; Th22 — T helper 22; THR — thyroid hormone receptor; TNF-a — tumor necrosis factor alpha; Tregs — regulatory 
T cells; TRs — thyroid hormone receptors; TRa — thyroid hormone receptor alpha; TRb — thyroid hormone receptor beta; TRH 
— hypothalamic thyrotropin-releasing hormone; TTR — transthyretin



11

Endokrynologia Polska

R
EV

IE
W

Ta
bl

e 
2.

 F
ac

to
rs

 a
ffe

ct
in

g 
th

e e
ffe

ct
iv

en
es

s o
f l

ev
ot

hy
ro

xi
ne

 (L
T4

) h
or

m
on

e r
ep

la
ce

m
en

t

Fa
ct

or
Po

ss
ib

le
 m

ec
ha

ni
sm

 o
f a

ct
io

n 
Ex

am
pl

es
 o

f e
vi

de
nc

e 
fr

om
 c

lin
ic

al
 tr

ia
ls

St
ud

y 
de

si
gn

Ou
tc

om
e

A
ut

ho
r, 

da
te

En
vi

ro
nm

en
ta

l

Ph
ys

ic
al

 a
ct

iv
ity

Pl
ei

ot
ro

pi
c 

ef
fe

ct
 o

n 
sy

st
em

ic
 re

du
ct

io
n 

of
 

in
fla

m
m

at
io

n 
an

d 
ox

id
at

iv
e 

st
re

ss
Ra

nd
om

ize
d 

cl
in

ic
al

 tr
ia

l o
f 2

2 
w

om
en

 
w

ith
 s

ub
cl

in
ic

al
 h

yp
ot

hy
ro

id
is

m
Af

te
r 1

6 
w

ee
ks

 o
f a

er
ob

ic
 e

xe
rc

is
e,

 th
er

e 
w

as
 a

 s
ig

ni
fic

an
t 

im
pr

ov
em

en
t i

n 
th

e 
qu

al
ity

 o
f l

ife
W

er
ne

ck
 e

t a
l.,

 
20

18
 [9

9]

Gu
t m

ic
ro

bi
om

e

In
flu

en
ce

 o
n 

th
e 

im
m

un
e 

sy
st

em
 a

nd
 th

e 
ab

so
rp

tio
n 

of
 m

ic
ro

nu
tri

en
ts

, w
hi

ch
 a

re
 n

ec
es

sa
ry

 
fo

r t
he

 p
ro

pe
r m

et
ab

ol
is

m
 a

nd
 fu

nc
tio

n 
of

 
th

yr
oi

d 
ho

rm
on

es

Sy
st

em
at

ic
 re

vi
ew

 w
ith

 m
et

a-
an

al
ys

is
 o

f 
13

6 
hy

po
th

yr
oi

d 
pa

rti
ci

pa
nt

s

Af
te

r 8
 w

ee
ks

 o
f s

up
pl

em
en

ta
tio

n 
w

ith
 m

ai
nl

y 
La

ct
ob

ac
ill

us
 

an
d 
Bi
fid
ob
ac
te
riu
m

 s
tra

in
s,

 th
er

e 
w

as
 a

 c
lin

ic
al

ly
 

an
d 

st
at

is
tic

al
ly

 in
si

gn
ifi

ca
nt

 d
ec

re
as

e 
in

 T
SH

 b
ut

 n
o 

ef
fe

ct
 o

n 
FT

3 
le

ve
ls

Za
w

ad
zk

a 
et

 a
l.,

 
20

23
 [9

4]

En
do

cr
in

e 
di

sr
up

to
rs

Ef
fe

ct
s 

on
 th

yr
oi

d 
ho

rm
on

e 
tra

ns
po

rt 
an

d 
si

gn
al

in
g 

th
ro

ug
h 

bi
nd

in
g 

to
 T

BG
 a

nd
 th

yr
oi

d 
ho

rm
on

e 
re

ce
pt

or
s

M
et

a-
an

al
ys

is
 o

f d
at

e 
fro

m
 1

2,
67

4 
pa

tie
nt

s
A 

si
gn

ifi
ca

nt
 a

ss
oc

ia
tio

n 
w

as
 fo

un
d 

be
tw

ee
n 

ex
po

su
re

 to
 

di
et

hy
lh

ex
yl

 p
ht

ha
la

te
 m

et
ab

ol
ite

s 
an

d 
FT

4 
an

d 
TS

H 
le

ve
ls

Ki
m

 e
t a

l.,
 

20
19

 [1
00

]

Th
e 

cr
os

s-
se

ct
io

na
l s

tu
dy

 o
f 6

47
8 

ad
ul

ts
In

ve
rs

e 
co

rre
la

tio
n 

be
tw

ee
n 

ur
in

ar
y 

bi
sp

he
no

l A
 a

nd
 F

T3
 

an
d 

FT
4 

le
ve

ls
 in

 th
e 

gr
ou

p 
w

ith
 h

ig
he

r B
M

I
Kw

on
 e

t a
l.,

 
20

20
 [1

01
]

Se
le

ni
um

 d
ef

ic
ie

nc
y

In
ac

tiv
at

io
n 

of
 g

lu
ta

th
io

ne
 p

er
ox

id
as

e 
an

d 
in

cr
ea

se
d 

ox
id

at
iv

e 
st

re
ss

 le
ad

in
g 

to
 th

yr
oi

d 
ce

ll 
da

m
ag

e,
 

au
to

im
m

un
ity

 a
nd

 a
ct

iv
at

io
n 

of
 fi

br
ot

ic
 p

ro
ce

ss
es

Sy
st

em
at

ic
 re

vi
ew

 w
ith

 m
et

a-
an

al
ys

is
 o

f 
16

 c
on

tro
lle

d 
tri

al
s

Se
le

ni
um

 s
up

pl
em

en
ta

tio
n 

re
du

ce
d 

se
ru

m
 a

TP
O 

le
ve

ls
 a

fte
r 

3,
 6

, a
nd

 1
2 

m
on

th
s 

in
 a

n 
LT

4-
tre

at
ed

 p
at

ie
nt

s 
w

ith
 c

hr
on

ic
 

au
to

im
m

un
e 

th
yr

oi
di

tis
 a

nd
 a

fte
r 3

 m
on

th
s 

in
 u

nt
re

at
ed

 
pa

tie
nt

s 
w

ith
 c

hr
on

ic
 a

ut
oi

m
m

un
e 

th
yr

oi
di

tis

W
ic

hm
an

 e
t a

l.,
 

20
16

 [1
05

]

Iro
n 

de
fic

ie
nc

y
De

cr
ea

se
d 

th
yr

oi
d 

pe
ro

xi
da

se
 a

ct
iv

ity
 

an
d 

ex
ac

er
ba

tio
n 

of
 a

ut
oi

m
m

un
ity

Sy
st

em
at

ic
 re

vi
ew

 w
ith

 m
et

a-
an

al
ys

is
 o

f 
8 

cr
os

s-
se

ct
io

na
l s

tu
di

es

In
 w

om
en

 o
f r

ep
ro

du
ct

iv
e 

ag
e,

 ir
on

 d
efi

ci
en

cy
 s

ig
ni

fic
an

tly
 

in
cr

ea
se

s 
th

e 
ris

k 
of

 b
ot

h 
po

si
tiv

e 
aT

PO
 a

nd
 a

Tg
, w

hi
le

 in
 

pr
eg

na
nt

 w
om

en
 it

 s
ig

ni
fic

an
tly

 in
cr

ea
se

s 
se

ru
m

 T
SH

 le
ve

ls
 

an
d 

de
cr

ea
se

s 
FT

4 
le

ve
ls

Lu
o 

et
 a

l.,
 

20
21

 [1
09

]

Sy
st

em
at

ic
 re

vi
ew

 w
ith

 m
et

a-
an

al
ys

is
 o

f 
10

 s
tu

di
es

In
 a

du
lts

, i
ro

n 
de

fic
ie

nc
y 

si
gn

ifi
ca

nt
ly

 d
ec

re
as

es
 F

T4
 a

nd
 F

T3
 

le
ve

ls
Ga

ro
fa

lo
 e

t a
l.,

 
20

23
 [1

10
]

M
ag

ne
si

um
 d

ef
ic

ie
nc

y
Ef

fe
ct

 o
n 

en
er

gy
 b

al
an

ce
 a

nd
 io

di
ne

 u
pt

ak
e

Th
e 

cr
os

s-
se

ct
io

na
l s

tu
dy

 o
f 1

25
7 

Ch
in

es
e 

pa
rti

ci
pa

nt
s

Se
ve

re
ly

 lo
w

 s
er

um
 m

ag
ne

si
um

 le
ve

ls
 w

er
e 

as
so

ci
at

ed
 w

ith
 

an
 in

cr
ea

se
d 

ra
te

 o
f a

TG
 p

os
iti

vi
ty

, H
T 

an
d 

hy
po

th
yr

oi
di

sm
W

an
g 

et
 a

l.,
 

20
18

 [1
13

]

Zi
nc

 d
ef

ic
ie

nc
y

Ef
fe

ct
s 

on
 T

 ly
m

ph
oc

yt
e 

ac
tiv

ity
 a

nd
 b

in
di

ng
 o

f 
T3

 h
or

m
on

e 
to

 re
ce

pt
or

s
Sy

st
em

at
ic

 re
vi

ew
 o

f 1
3 

ra
nd

om
ize

d 
co

nt
ro

lle
d 

tri
al

s
Zi

nc
 s

up
pl

em
en

ta
tio

n 
in

 p
eo

pl
e 

w
ith

 o
ve

rw
ei

gh
t o

r o
be

si
ty

 
w

as
 a

ss
oc

ia
te

d 
w

ith
 in

cr
ea

se
 F

T3
 le

ve
ls

Za
vr

os
 e

t a
l.,

 
20

23
 [1

17
]



12

Problems in levothyroxine substitution	 Magdalena Łukawska-Tatarczuk, Edward Franek

R
EV

IE
W

Ta
bl

e 
2.

 F
ac

to
rs

 a
ffe

ct
in

g 
th

e e
ffe

ct
iv

en
es

s o
f l

ev
ot

hy
ro

xi
ne

 (L
T4

) h
or

m
on

e r
ep

la
ce

m
en

t

Fa
ct

or
Po

ss
ib

le
 m

ec
ha

ni
sm

 o
f a

ct
io

n 
Ex

am
pl

es
 o

f e
vi

de
nc

e 
fr

om
 c

lin
ic

al
 tr

ia
ls

St
ud

y 
de

si
gn

Ou
tc

om
e

A
ut

ho
r, 

da
te

Vi
ta

m
in

 D
3 

 d
ef

ic
ie

nc
y

In
cr

ea
se

d 
in

fla
m

m
at

io
n 

an
d 

au
to

im
m

un
ity

M
et

a-
an

al
ys

is
 o

f 6
 ra

nd
om

ize
d 

co
nt

ro
lle

d 
tri

al
s

Vi
ta

m
in

 D
 s

up
pl

em
en

ta
tio

n 
si

gn
ifi

ca
nt

ly
 re

du
ce

d 
th

e 
le

ve
l o

f 
aT

PO
Ji

an
g 

et
 a

l.,
 

20
22

 [1
21

]

Vi
ta

m
in

 B
12

 d
ef

ic
ie

nc
y

In
cr

ea
se

d 
au

to
im

m
un

ity
 a

nd
 d

ys
fu

nc
tio

n 
of

 m
et

ab
ol

ic
 c

yc
le

s 
re

la
te

d 
to

 m
et

hy
la

tio
n,

 w
hi

ch
 is

 
as

so
ci

at
ed

 w
ith

 a
n 

ex
ce

ss
 o

f h
om

oc
ys

te
in

e

Th
e 

cr
os

s-
se

ct
io

na
l s

tu
dy

 o
f 

10
0 

hy
po

th
yr

oi
d 

pa
tie

nt
s

Vi
ta

m
in

 B
12

 d
efi

ci
en

cy
 w

as
 fo

un
d 

to
 b

e 
co

rre
la

te
d 

w
ith

 
el

ev
at

ed
 s

er
um

 le
ve

ls
 o

f a
TP

O 
an

d 
aT

G
Ch

at
te

rje
e 

et
 a

l.,
  

20
23

 [1
24

]

M
et

fo
rm

in
Re

du
ce

s 
au

to
im

m
un

ity
Sy

st
em

at
ic

 re
vi

ew
 a

nd
 m

et
a-

an
al

ys
is

M
et

fo
rm

in
 s

ig
ni

fic
an

tly
 re

du
ce

s 
aT

PO
 a

nd
 a

Tg
 le

ve
ls

 in
 H

T 
pa

tie
nt

s
Ji

a 
et

 a
l.,

 
20

20
 [1

30
]

M
yo

-in
os

ito
l

In
cr

ea
se

d 
se

ns
iti

vi
ty

 o
f t

hy
ro

cy
te

s 
to

 T
SH

 
an

d 
ef

fe
ct

s 
on

 io
di

na
tio

n 
pr

oc
es

se
s

Ra
nd

om
is

ed
 c

lin
ic

al
 tr

ia
l o

f 1
68

 p
at

ie
nt

s 
w

ith
 H

T 
ha

vi
ng

 T
SH

 le
ve

ls
 b

et
w

ee
n 

3 
an

d 
6 

µI
U/

m
L

Ta
ki

ng
 m

yo
-in

os
ito

l a
nd

 s
el

en
iu

m
 (a

t a
 d

os
e 

of
 

60
0 

m
g 

m
yo

-in
os

ito
l a

nd
 8

3 
μg

 s
el

en
iu

m
) c

om
pa

re
d 

to
 

ta
ki

ng
 s

el
en

iu
m

 a
lo

ne
 (a

t a
 d

os
e 

of
 8

3 
μg

) f
or

 6
 m

on
th

s 
si

gn
ifi

ca
nt

ly
 re

du
ce

d 
TS

H 
le

ve
ls

, a
nt

ith
yr

oi
d 

an
tib

od
y 

tit
re

s 
an

d 
im

pr
ov

ed
 m

oo
d

N
or

di
o 

et
 a

l.,
 

20
17

 [1
34

]

Pr
os

pe
ct

iv
e 

in
te

rv
en

tio
na

l m
ul

tic
en

tri
c 

st
ud

y 
of

 1
48

 p
re

m
en

op
au

sa
l w

om
en

6-
m

on
th

 s
up

pl
em

en
ta

tio
n 

w
ith

 m
yo

-in
os

ito
l 6

00
 m

g 
an

d 
se

le
ni

um
 8

3 
ug

 w
as

 a
ss

oc
ia

te
d 

w
ith

 s
ig

ni
fic

an
t r

ed
uc

tio
ns

 
in

 T
SH

, a
TP

O,
 a

nd
 a

TG
 a

nt
ib

od
ie

s 
an

d 
fe

w
er

 s
ym

pt
om

s 
as

so
ci

at
ed

 w
ith

 h
yp

ot
hy

ro
id

is
m

Pa
ye

r e
t a

l.,
 

20
22

 [1
35

]

As
hw

ag
an

dh
a

Re
st

or
ed

 T
3 

an
d 

T4
 le

ve
ls

 a
nd

 p
re

ve
nt

ed
 

co
m

pl
ic

at
io

ns
 o

f h
yp

ot
hy

ro
id

is
m

 in
 th

e 
ne

rv
ou

s 
sy

st
em

, i
nc

lu
di

ng
 o

xi
da

tiv
e 

st
re

ss
 a

nd
 n

er
vo

us
 

sy
st

em
 in

fla
m

m
at

io
n

Ra
nd

om
is

ed
 c

lin
ic

al
 tr

ia
l o

f 5
0 

pa
tie

nt
s 

w
ith

 s
ub

cl
in

ic
al

 h
yp

ot
hy

ro
id

sm

8 
w

ee
ks

 o
f t

re
at

m
en

t w
ith

 a
sh

w
ag

an
dh

a 
(6

00
 m

g 
da

ily
) 

im
pr

ov
ed

 s
er

um
 T

SH
, F

T3
, a

nd
 F

T4
 le

ve
ls

 s
ig

ni
fic

an
tly

 
co

m
pa

re
d 

to
 p

la
ce

bo

Sh
ar

m
a 

et
 a

l.,
 

20
18

 [1
37

]

Ge
ne

tic

SN
P 

in
 g

en
es

 o
f t

ra
ns

po
rte

rs
 

fo
r t

hy
ro

id
 h

or
m

on
es

 
Im

pa
ire

d 
tra

ns
po

rt 
of

 fr
ee

 th
yr

oi
d 

ho
rm

on
es

 in
to

 
th

e 
ce

ll
Ra

nd
om

is
ed

 c
lin

ic
al

 tr
ia

l o
f 1

41
 p

at
ie

nt
s 

w
ith

 H
T

Bo
th

 th
e 

OA
TP

1C
1-

in
tro

n3
C 

>
 T

 a
nd

 th
e 

OA
TP

1C
1-

C3
03

5T
 

po
ly

m
or

ph
is

m
, w

er
e 

as
so

ci
at

ed
 w

ith
 s

ym
pt

om
s 

of
 fa

tig
ue

 
an

d 
de

pr
es

si
on

, b
ut

 n
ot

 w
ith

 p
re

fe
re

nc
e 

fo
r c

om
bi

ne
d 

LT
4-

LT
3 

th
er

ap
y

va
n 

de
r D

eu
re

 e
t 

al
., 

20
08

 [1
45

]

SN
P 

in
 g

en
e 

of
 D

IO
2

De
cr

ea
se

 in
 th

e 
co

nv
er

si
on

 o
f F

T4
 to

 F
T3

Ra
nd

om
is

ed
 c

lin
ic

al
 tr

ia
l o

f 4
5 

pa
tie

nt
s 

w
ith

 H
T

A 
co

m
bi

na
tio

n 
of

 p
ol

ym
or

ph
is

m
s 

in
 D

IO
2 

(rs
22

50
14

) 
an

d 
M

CT
10

 (r
s1

76
06

25
3)

 is
 a

ss
oc

ia
te

d 
w

ith
 th

e 
pr

ef
er

en
ce

 
fo

r c
om

bi
ne

d 
LT

4-
LT

3 
th

er
ap

y

Ca
rlé

 e
t a

l.,
 

20
17

 [1
44

]



13

Endokrynologia Polska

R
EV

IE
W

Fa
ct

or
Po

ss
ib

le
 m

ec
ha

ni
sm

 o
f a

ct
io

n 
Ex

am
pl

es
 o

f e
vi

de
nc

e 
fr

om
 c

lin
ic

al
 tr

ia
ls

St
ud

y 
de

si
gn

Ou
tc

om
e

A
ut

ho
r, 

da
te

SN
P 

in
 g

en
e 

of
 T

HR
a 

Im
pa

ire
d 

ac
tio

n 
of

 th
yr

oi
d 

ho
rm

on
es

Th
e 

cr
os

s-
se

ct
io

na
l s

tu
dy

 o
f 2

28
 p

at
ie

nt
s 

w
ith

 p
rim

ar
y 

hy
po

th
yr

oi
di

sm
Th

e 
TH

Ra
 rs

93
93

48
 p

ol
ym

or
ph

is
m

 w
as

 a
ss

oc
ia

te
d 

w
ith

 L
-T

4 
re

pl
ac

em
en

t d
os

es
 in

 h
yp

ot
hy

ro
id

 p
at

ie
nt

s 
an

d 
ce

nt
ra

l o
be

si
ty

Al
-A

zz
am

 e
t a

l.,
 

20
14

 [1
47

]

SN
P 

in
 g

en
e 

of
 T

G 
Ex

ac
er

ba
tio

n 
of

 a
ut

oi
m

m
un

ity
Th

e 
cr

os
s-

se
ct

io
na

l s
tu

dy
 o

f 1
37

 p
at

ie
nt

s 
w

ith
 H

T
Th

e 
rs

20
76

74
0 

po
ly

m
or

ph
is

m
 c

or
re

la
te

d 
w

ith
 th

e 
se

ru
m

 le
ve

ls
 

of
 a

Tg
M

izu
m

a 
et

 a
l.,

 
20

17
 [1

50
]

SN
P 

in
 g

en
e 

of
 T

PO
Ex

ac
er

ba
tio

n 
of

 a
ut

oi
m

m
un

ity
Th

e 
cr

os
s-

se
ct

io
na

l s
tu

dy
 o

f 1
47

 p
at

ie
nt

s 
w

ith
 H

T
Th

e 
TP

O 
rs

20
71

40
0 

an
d 

rs
20

48
72

2 
po

ly
m

or
ph

is
m

s 
w

er
e 

as
so

ci
at

ed
 w

ith
 th

e 
se

ru
m

 le
ve

ls
 o

f a
TP

O
To

m
ar

i e
t a

l. 
20

17
 [1

51
]

SN
P 

in
 g

en
e 

of
 M

TR
R

Ep
ig

en
et

ic
 m

od
ifi

ca
tio

n,
 c

ha
ng

e 
in

 g
lo

ba
l 

DN
A 

m
et

hy
la

tio
n 

le
ve

ls
Th

e 
cr

os
s-

se
ct

io
na

l s
tu

dy
 o

f 1
25

 p
at

ie
nt

s 
w

ith
 H

T
Th

e 
M

TR
R+

66
AA

 g
en

ot
yp

e 
w

as
 o

bs
er

ve
d 

to
 b

e 
m

or
e 

fre
qu

en
t i

n 
pa

tie
nt

s 
w

ith
 s

ev
er

e 
HD

 th
an

 in
 th

os
e 

w
ith

 m
ild

 H
D

Ar
ak

aw
a 

et
 a

l.,
 

20
14

 [1
66

]

Ep
ig

en
et

ic

En
vi

ro
nm

en
ta

l f
ac

to
rs

 s
til

l 
no

t k
no

w
n

Di
ffe

re
nt

ia
l m

et
hy

la
tio

n 
of

 g
en

es
 w

ith
in

 
KL

F9
 a

nd
 D

OT
1L

 a
ss

oc
ia

te
d 

w
ith

 
th

e 
hy

po
th

al
am

ic
-p

itu
ita

ry
-th

yr
oi

d 
ax

is

M
et

a-
an

al
ys

is
 o

f E
W

AS
 o

f 7
07

3 
pa

rti
ci

pa
nt

s
KL

F9
 D

N
A 

m
et

hy
la

tio
n 

w
as

 a
ss

oc
ia

te
d 

w
ith

 th
yr

oi
d 

ho
rm

on
e 

le
ve

ls
W

ei
hs

 e
t a

l.,
 

20
23

 [1
61

]

M
et

a-
an

al
ys

is
 o

f E
W

AS
 o

f 5
63

 
pa

rti
ci

pa
nt

s
KL

F9
 a

nd
 D

OT
1L

 D
N

A 
m

et
hy

la
tio

n 
w

as
 a

ss
oc

ia
te

d 
w

ith
 T

SH
 

an
d 

FT
3 

le
ve

ls
La

fo
nt

ai
ne

  e
t a

l.,
  

20
21

 [1
62

]

M
at

er
na

l e
xp

os
ur

e 
to

 
pe

rs
is

te
nt

 o
rg

an
ic

 p
ol

lu
ta

nt
s 

(i.
e.

, p
es

tic
id

es
, i

nd
us

tri
al

 
ch

em
ic

al
 p

ro
du

ct
s)

DN
A 

m
et

hy
la

tio
n 

of
 g

en
es

 re
la

te
d 

to
 

th
yr

oi
d 

ho
rm

on
e 

m
et

ab
ol

is
m

 a
nd

 tr
an

sp
or

t i
n 

th
e 

pl
ac

en
ta

Th
e 

cr
os

s-
se

ct
io

na
l s

tu
dy

 o
f 1

06
 

Ko
re

an
 m

ot
he

rs
 a

t d
el

iv
er

y

In
 u

te
ro

 e
xp

os
ur

e 
to

 p
er

si
st

en
t o

rg
an

ic
 p

ol
lu

ta
nt

s 
ca

n 
af

fe
ct

 
DN

A 
m

et
hy

la
tio

n 
of

 D
IO

3 
an

d 
M

CT
8 

ge
ne

s 
in

 th
e 

pl
ac

en
ta

 in
 

a 
se

xu
al

ly
 d

im
or

ph
ic

 m
an

ne
r

Ki
m

 e
t a

l.,
 

20
19

 [1
67

]

TS
H 

—
 th

yr
oi

d 
st

im
ul

at
in

g 
ho

rm
on

e;
 F

T3
 —

 fr
ee

 tr
iio

do
th

yr
on

in
e;

 T
BG

 —
 th

yr
ox

in
e-

bi
nd

in
g 

gl
ob

ul
in

; F
T4

 —
 fr

ee
 th

yr
ox

in
e;

 T
PO

 —
 th

yr
oi

d 
pe

ro
xi

da
se

; B
M

I —
 b

od
y 

m
as

s 
in

de
x;

 a
TG

 —
 a

nt
i-t

hy
ro

gl
ob

ul
in

 a
nt

ib
od

ie
s;

 S
N

P 
—

 s
in

gl
e 

nu
cl

eo
tid

e 
po

ly
m

or
ph

is
m

; H
T 

—
 H

as
hi

m
ot

o’
s 

th
yr

oi
di

tis
; a

TP
O 

—
 th

yr
oi

d 
pe

ro
xi

da
se

 a
nt

ib
od

ie
s;

 O
AT

P1
C 

—
 o

rg
an

ic
 a

ni
on

 tr
an

sp
or

te
r p

ol
yp

ep
tid

e 
1C

1;
 T

HR
a

 —
 th

yr
oi

d 
ho

rm
on

e 
re

ce
pt

or
 a

lp
ha

; D
IO

3 
—

 ty
pe

 3
 d

ei
od

in
as

e;
 E

W
AS

 —
 e

pi
ge

no
m

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y;
 M

CT
8 

—
 m

on
oc

ar
bo

xy
la

te
 tr

an
sp

or
te

r 8
; K

LF
9 

—
 K

ru
ep

pe
l-l

ik
e 

fa
ct

or
 9

Ta
bl

e 
2.

 F
ac

to
rs

 a
ffe

ct
in

g 
th

e e
ffe

ct
iv

en
es

s o
f l

ev
ot

hy
ro

xi
ne

 (L
T4

) h
or

m
on

e r
ep

la
ce

m
en

t



14

Problems in levothyroxine substitution	 Magdalena Łukawska-Tatarczuk, Edward Franek

R
EV

IE
W

and suggests clinical questions and management de-
pending on the cause.

Conclusion

Difficulties with LT4 treatment and the persistence of 
non-specific complaints despite adequate hormone re-
placement are common problems in clinical practice. To 
avoid them, a thorough analysis that takes into account 
personal factors, comorbid or undiagnosed diseases, 
drug interactions, and laboratory errors is essential. 
Optimizing the treatment of patients with hypothyroid-
ism should ensure not only the restoration of biochemi-
cal euthyroidism, but most importantly the resolution 

of symptoms and signs of hypothyroidism. This is likely 
due to a complex interaction between individual, ge-
netic, epigenetic, and environmental factors that result 
in disruption of the gut microbiome, associated mi-
cronutrient deficiencies, and immune dysfunction. It 
probably mediates impaired absorption or synthesis, 
transport, metabolism, and function of thyroid hor-
mones. Therefore, therapies aimed at lowering autoim-
munity are promising in resolving persistent symptoms 
but need to be confirmed in well-designed studies on 
larger groups of patients. Similarly, LT4 and LT3 combi-
nation therapy may be beneficial in selected groups of 
patients, probably with specific genetic predispositions 
that are still not well established. Thus, it is necessary 

Table 3. Suggestions for managing difficulties in levothyroxine (LT4) substitution

Problems encountered 
during treatment 
with LT4

Proposed diagnostics and question that we need to 
answear Management suggestion

Supra-physiological 
doses of LT4 or 
problems with achieving 
euthyroidism

Does the patient follow the instructions for taking 
the drug (fasting minimum 30 minutes before meals 

and medications)?

Inform the patient how to take the drug and in case 
of non-adherence recomend taking LT4 taken before 

bed, rather than in the morning or offer LT4 in soft gel 
or liquid form

Are there absorption disorders caused by gastrointestinal 
diseases, such as: gastroesophageal reflux disease, 

autoimmune atrophic gastritis, celiac disease, lactose 
intolerance, irritable bowel syndrome or others?

In case of  malabsorption, propose LT4 in soft gel 
or liquid form and consider the addition of vitamin C

Are there external factors, e.g., iron or calcium 
supplementation, or taking a proton pump inhibitor together 

with LT4, which may reduce its effectiveness?

Separating the administration of the hormone from 
consuming foods or medications that interfere with its 

absorption for 4–6 h

Is there medication taken that may increase the need for 
thyroid hormones, e.g. estrogen, antiepileptic drugs, drugs 

that increase thyroid autoimmunity...?

Modify treatment if possible or increase LT4 dose 
sufficiently

Clinical presentation 
is not consistent with 
thyroid hormone test 
results

Laboratory interferences

Repeat the test, informing the laboratory of possible 
erroneous results so that other methods can be used

If using biotin, discontinue its supplementation at 
least 48-72 hours before the blood test

Revision of the causes of hypothyroidism (especially if there 
is a history of COVID-19 or treatment with immune control 

inhibitors)

Reassessment of thyroid panel with thyroid ultrasound 
examination

Weight gain despite 
euthyroidism

Assess whether the patient has insulin resistance 
(elevated serum insulin levels (fasting or during OGTT) 

and determination of HOMA-IR

Recommend increasing physical activity, low 
glycemic index diet, consider adding metformine 

or myo-inositol

Feelings of fatigue, 
impaired concentration, 
lowered mood

Does the patient have other previously undiagnosed 
diseases: e.g., depression, obstructive sleep apnea, celiac 

disease, atrophic gastritis (vitamin B12 deficiency), adrenal 
insufficiency?

Apply treatment appropriate to other co-morbidities 
with hypothyroidism

Does the patient have latent iron deficiency (low ferritin 
levels), magnesium, vitamin D3 or others? Implement supplementation to correct deficiencies

Are the aTPO or aTG antibody titres very high? If the levels of antithyroid antibodies are very high 
consider including selenium

What is the FT4/FT3 ratio?

If low FT3 is observed, despite the exclusion of 
deficiencies or other causes that may be responsible 
for the presence of non-specific symptoms, consider 

combination therapy of T3 and T4

COVID-19 — 2019 coronavirus disease; OGTT — oral glucose tolerance test; HOMA-IR — homeostatic model assessment — insulin resistance; aTPO — thyroid 
peroxidase antibodies; aTG — anti-thyroglobulin antibodies; FT3 — free triiodothyronine; FT4 — free thyroxine
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to better understand the pathogenetic basis of thyroid 
diseases and develop treatment strategies tailored to 
the patient’s profile. It seems that developing a causal 
therapy based on knowledge of the pathogenesis of hy-
pothyroidism as an immunoendocrine disorder may be 
the key to achieve the main goal of treatment, which is 
to improve quality of life.
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