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ABsTrAcT

We are very close to completing two years since the start of the COVID-19 pandemic. Even though vaccines 
have been developed and applied to more than 4 billion people in the world, SARS-CoV-2 continues to be 
a challenge for humanity. Therefore, it is important to study modifiable risk factors that may increase the 
severity of COVID-19, and one of the most discussed has been vitamin D. Currently, there is some evidence 
of association between low serum 25-hydroxyvitamin D [25(OH)D3] and increased mortality and severity 
due to SARS-CoV-2 infection. Before the pandemic, experimental evidence in animal and human studies had 
reported that an acute inflammatory process can cause a secondary decrease in 25(OH)D3. COVID-19 can 
be associated with a severe inflammatory process with an elevation of inflammatory markers; in this light, 
the reported association between low 25(OH)D3 and COVID-19 severity and/or mortality may be an epi-
phenomenon of the inflammatory process induced by SARS-CoV-2 and be an example of reverse causality.

Key words: SARS-CoV-2; COVID-19; Vitamin D; 25-hydroxyvitamin D; severity; mortality

Disaster Emerg Med J 2022; 7(2): 124–131

InTrodUcTIon
Until December 31 2021, the COVID-19 pandemic 
has caused more than 5.4 million deaths worldwide, 
although mortality has decreased significantly due to 
the vaccination of more than 4.4 billion people [1]. 
Given the appearance of 8 new variants whose viru-
lence and coverage by current vaccines are still under 
study [2, 3], it is important to study modifiable risk 
factors that may reduce the risk of developing severe 
or fatal forms of SARS-CoV-2 infection. One of the 

most studied modifiable risk factors has been vitamin 
D. So far, several systematic and meta-analytic studies 
have been published, which have concluded that 
there may be a cause-effect relationship between 
low serum 25-hydroxyvitamin D (25(OH)D3) and in-
creased mortality and severity due to SARS-CoV-2  
infection [4–9]. However, the robustness of this cause-
and-effect relationship is currently being questioned 
and it has been suggested that this premature con-
clusion should be taken with caution for several rea-
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sons [10]. First, to make the causality inference, eco-
logical and observational studies were used; most of 
these studies did not have baseline levels of 25(OH)
D3 (before SARS-CoV-2 infection). Second, there is 
experimental and clinical evidence before the COV-
ID-19 pandemic that acute inflammatory diseases 
can cause a decrease in 25(OH)D3 concentration 
and not the opposite. Third, intervention studies 
with vitamin D in patients with severe COVID-19  
and hypovitaminosis have not had effective results  
in reducing mortality from COVID-19 [11, 12]. In this  
light, we argue that the low levels of 25(OH)D3 seen 
in severe COVID-19 are probably an epiphenomenon 
of the severe inflammatory process of COVID-19  
and not its cause. That is, the association of low se-
rum 25(OH)D3 and increased mortality and severity 
due to SARS-CoV-2 infection may be a phenomenon 
of reverse causality.

serUm 25(oH)d3 As A neGATIve mArKer 
of InflAmmATIon In THe pre-pAndemIc 

erA 
Vitamin D has been studied extensively before  
the pandemic as a negative marker of inflamma-
tion; that is, in patients who previously had normal 
25(OH)D3 levels, an inflammatory process can make 
vitamin D levels decrease [13, 14]. 

studies in animals
Studies in dogs on vitamin D status before and after 
surgery have found a significant decrease in total 
25(OH)D3 concentration, which increased after the 
operation and then normalized on day 60 [15]. 
C-reactive protein (CRP) increased significantly  
and albumin also decreased significantly [15].

studies in humans
In a systematic study published by Silva et al. [16]  
in 2014, 6 of 8 included studies found evidence that 
the concentration of serum 25(OH)D3 decreases 
during the acute-phase response in humans. This 
has been observed during knee/hip arthroplasty 
[17–19], acute myocardial infarction [20], acute 
pancreatitis [21], the first dose of IV bisphospho-
nate [22], and cardiopulmonary bypass (23). In all 
the studies, CRP was elevated. Recovery to baseline 
25(OH)D3 concentrations took 2 weeks, although  
in 2 studies it took up to 90 days. In two studies, the  
level of total 25(OH)D was not modified, but the 
baseline sample was taken on the second day of  

the event [16]. None of the 6 studies mentioned 
above measured free 25(OH)D3. Recently, Binkley 
et al. found that on the first day after surgery (to-
tal hip arthroplasty), total and free 25(OH)D (re-
duction from 21 to 34%), as well as DBP (vitamin 
D-binding protein), calcium, creatinine, alkaline 
phosphatase, and plasma hemoglobin declined 
8–22% (p < 0.0001) with respect to measurements 
before surgery [24]. On the other hand, the urinary 
DBP/creatinine ratio (UDBP/Cr) increased significantly 
and the levels of total and free 25(OH)D returned to 
baseline levels 6 weeks after surgery.

Association between low serum 
25-hydroxyvitamin d and infections
Smolders et al. investigated whether systemic in-
flammation lowers circulating 25(OH)D levels using 
the experimental human endotoxemia model (bo-
lus of E. Coli-derived lipopolysaccharide, LPS) [25]. 
They found a significant reduction in 25(OH)D lev-
els 2–3 hours after infusion, compared to baseline 
levels; the fall in the levels of 25(OH)D coincided 
with the elevation of the levels of proinflammatory 
cytokines tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, and IL-8; in turn, 25(OH)D levels recovered to 
baseline 6 hours following cessation of LPS infusion.

postulated mechanisms of 25(oH)d reduction 
induced by acute inflammation
Several main mechanisms have been postulated that 
could explain the reduction in 25(OH)D associated 
with surgical interventions [24]. A surgical interven-
tion, especially interventions in traumatology (e.g., 
knee/hip arthroplasty) would cause an increase in 
uptake and/or consumption of 25(OH)D in the im-
mediate post-operative interval when demands for 
tissue regeneration are high. Part of the reduction in 
25(OH)D could be due to the increased volume of 
distribution, produced using water solutions during 
operations. Another possible explanation is an in-
crease in the catabolism and elimination of 25(OH)
D from the intravascular compartment or increased 
urinary loss. Concordant with this last hypothesis, 
reduced serum DBP and increased urinary DBP/cre-
atinine ratio have been found immediately after 
surgery [24].

There is evidence that serum 25(OH)D is a neg-
ative acute-phase reactant. The rationale for this 
hypothesis is the inverse relationship between 
the reduction in serum concentration of 25(OH)D  
and increased circulating inflammatory marker levels 
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[17, 18, 26]. An inverse relationship of CRP with 
low levels of 25(OH)D has been found during to-
tal knee arthroplasty (TKA) and other orthopedic 
surgeries [16]. It has also been observed that an 
increase in Interferon-gamma (IFN-gamma) levels 
occurs with a simultaneous decrease in 1.25(OH)
D in the circulation after anterior cruciate ligament 
reconstruction [27]. Interestingly, IFN-gamma has 
been found to mediate the enzymatic conversion 
of 25(OH)D to 1,25(OH)D in circulating immune 
cells [28–30]. The Th1 cytokine IFN-gamma up-reg-
ulated TLR2/1 induction of 25-hydroxyvitamin 
D-1α-hydroxylase (i.e., CYP27B1), leading to en-
hanced bioconversion of 25-hydroxyvitamin D3 to 
its active metabolite 1,25(OH)D3. In contrast, the 
Th2 cytokine IL-4, by itself and in combination with 
the TLR2/1 ligand (TLR, Toll-like receptor), induced 
catabolism of 25(OH)D3 to the inactive metabolite 
24.25(OH)D3, and was dependent on expression 
of vitamin D-24-hydroxylase (i.e., CYP24A1) [28]. 
Another important finding is that tumor necrosis 
factor-alpha induces vitamin D-1-hydroxylase activity 
in normal human alveolar macrophages [31]. Hen-
riksen et al. reported a reduction in serum 25(OH)D 
concentrations after total knee arthroplasty, at the 
beginning mildly (12%) from pre-surgery to 2 days 
post-surgery and the more pronounced decrease 
(74%) from 3 to 8 weeks post-surgery; simultane-
ously, they observed an increase in serum pro-in-
flammatory cytokine concentrations (i.e., TNF-a, 
IFN-gamma, IL-1b, GM-CSF, and IL-6) [26].

reverse cAUsAlITy In medIcIne
Sir Austin Bradford Hill, 56 years ago published his 
famous article on the 9 criteria to take into account 
to establish an association between two variables, 
and among all these criteria one of the most impor-
tant is the fourth, which he called temporality [32]. 
Temporality is defined as the necessity for exposure, 
or a hypothetical cause, to precede an outcome, 
or an effect, in time [33]. Sir Austin Bradford Hill 
explained the concept of temporality in a very sim-
ple way, resorting to the analogy of analyzing and 
answering the question in an association study be-
tween two variables: “which is the cart and which 
the horse?”; that is, avoid confusing cause and ef-
fect [34].

Reverse causality (also called reverse causation, 
retrocausality, or backward causation) is defined 
as a phenomenon in which the outcome precedes  

and causes the exposure [35–37]. Reverse causal-
ity is one of the most important biases that can 
be committed in observational studies, especially 
in those that seek to associate a risk factor with 
a disease. In medicine, several examples of reverse 
causality have been described, especially in studies 
of cardiovascular risk factors [38], such as low body 
mass index in many observational studies of chronic 
disease (e.g., heart failure, renal disease, rheuma-
toid arthritis) associated with greater mortality risk 
[39], low cholesterol associated with higher cancer 
risk [40] and low hemoglobin A1c associated with 
higher mortality risk in diabetes [41], among others. 

AssocIATIon BeTween low serUm 
25-HydroxyvITAmIn d And IncreAsed 
morTAlITy And severITy dUe To sArs-
CoV-2 infeCtion: reVerse Causality?

Here, we summarize evidence to support that the 
association between low serum 25(OH)D and in-
creased mortality and severity due to SARS-CoV-2  
infection is probably a phenomenon of reverse cau-
sality (Fig. 1).

ecological studies
Ecological studies consist of taking the information 
contained in databases of 25(OH)D concentrations 
of populations and countries and associating it with 
mortality, recovery, severity, or susceptibility to SARS-
CoV-2 infection, based on geographic altitude [42]. 
It should be noted that the inference is indirect, that 
is, the concentration of vitamin D in the patients 
is not taken directly. In an ecological study carried 
out with data from 46 countries, Mariani et al. 
[43] found an association between vitamin D defi-
ciency and COVID-19 incidence, complications, and 
mortality. In another ecological study with mortality 
data from 117 countries taken on May 17, 2020,  
Rhodes et al. [42] also found an association between 
mortality from COVID-19 and geographic latitude, 
inferring that some countries do not have sufficient 
exposure to ultraviolet B to maintain normal vitamin 
D blood levels throughout winter. The most impor-
tant limitation of ecological studies is the possibility 
that an ecological fallacy is being observed, that is, 
a conclusion about individuals based only on analy-
ses of group data [43]. Another limitation of this type 
of study applied to COVID-19 is that mortality is very 
dynamic and changing, a characteristic that makes 
them less powerful, which differentiates it when 
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studies are carried out on chronic diseases and vita-
min D. Another limitation is that the concentration 
of vitamin D can change in the individual, in a pan-
demic for example due to isolation and because  
the individual begins to take vitamin D due to ad-
vertisements.

mendelian randomization studies
Mendelian randomization studies use the ge-
netic variant as a surrogate variable for 25(OH)D 
deficiency, to infer the causal effect of exposure 
[25(OH)D concentration] to an outcome, for ex-
ample, susceptibility to infection by SARS-CoV-2, 
severity or mortality [44]. Butler-Laporte et al. [44] 
conducted a Mendelian randomization study with 
genetic variants associated with 25(OH)D levels 
in a genome-wide association study (GWAS) with 
443,734 participants of European ancestry, where 
they found no association between 25(OH)D levels 
and COVID-19 susceptibility, severity, or hospitaliza-
tion. Patchen performed another two-sample Men-
delian randomization study in the population-based 
UK Biobank and SUNLIGHT Consortium, applied 
to meta-analyzed results of genome-wide analyses  
in the COVID-19 Host Genetics Initiative, and they 
also found no evidence of causality association be-
tween serum vitamin D concentrations and suscep-
tibility to and severity of COVID-19 infection, includ-
ing severe respiratory infection and hospitalization 
[45]. Cui et al. [46] performed a two-sample Men-
delian randomization using summary-level GWAS 

data, and they found no evidence to support the 
causal associations between the genetically lowered 
serum 25(OH)D concentrations and the risk of COV-
ID-19 susceptibility. 

observational studies
Most of the observational studies and their respec-
tive meta-analytic studies are based on the determi-
nation of 25(OH)D levels when the patient is hospi-
talized or in the ICU, and for obvious reasons, they 
do not have baseline determinations. Therefore, it 
is strictly difficult to affirm or deny the inference of 
causality with these data only. However, recent stud-
ies are showing evidence that is in favor of a reverse 
causality explanation. Evidence is of two types: stud-
ies showing an increase in inflammatory markers 
with a simultaneous decrease in 25(OH)D; and stud-
ies where 25(OH)D was measured during the course 
of the disease. A recent systematic study found that 
mean values of inflammatory markers [C-reactive 
protein (CRP), interleukin 6 (IL-6), and tumor necro-
sis factor a (TNF-a)] were higher in the low 25(OH)
D groups [47, 48]. Other recently published studies 
also found an increase in inflammatory markers with 
a simultaneous reduction in 25(OH)D levels [48–51]. 
Balzanelli et al. have described patients with severely 
low levels of vitamin D, and who also have extremely 
high levels of IL-6 and low glomerular filtration rate 
(eGFR), and they have postulated that there would 
be a reduction in the reuptake of filtered 25-hydrox-
yvitamin D in proximal kidney tubules. Some obser-

fIGUre 1. A. The increase in severity and mortality from COVID-19 would occur because, in addition to other factors, the patient would 
have a low concentration of 25(OH)D3. However, there is a lack of studies showing baseline vitamin D levels before infection; B. The 
reverse causality hypothesis postulates that patients before infection could have normal levels of 25(OH)D3, but later it decreases as an 
epiphenomenon of the acute inflammatory process associated with severe COVID-19. If the patient manages to recover from the disease 
and the acute inflammatory process decreases, 25(OH)D3 levels could potentially increase or normalize
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vational studies have found evidence of an inverse 
relationship evolution between the evolution over 
time of a patient with COVID-19 and the markers of 
acute inflammation. In a case-control study, Gameil 
et al. found that patients who had elevated CRP 
3 months after COVID-19 also had lower levels of 
serum 25(OH)D compared to controls [52]. 

In a case-control study, Gupta et al. [53] com-
pared 25(OH)D levels taken up to 6 months be-
fore, with those taken after SARS-CoV-2 infection,  
and they found that COVID-19 positive individuals 
had lower serum 25(OH)D measurements compared 
to controls; they postulated the possibility that re-
duced serum 25(OH)D may be a consequence and 
not a cause of COVID-19 infection. Gallelli et al. [54]  
studied 25(OH)D levels in patients during COV-
ID-19 disease, and found that during the acute 
phase they were reduced, but increased significantly 
after recovery; with these findings, it could be inter-
preted that once the inflammatory process ceases, 
25(OH)D levels tend to normalize. 

clinical trials and metanalytic studies
The best evidence in favor of a causal association 
between vitamin D concentrations and clinical out-
comes in patients with COVID-19 could be that 
supplementation in patients with low levels should 
improve patient survival; however, the studies pub-
lished to date do not support this hypothesis. Chen 
et al. recently published a meta-analysis that includ-
ed 11 observational studies and two clinical trials, 
and they found no relationship between vitamin D 
levels and severity and mortality from COVID-19; on 
the other hand, another important finding was that 
vitamin D supplements did not significantly improve 
clinical outcomes in patients with COVID-19 [55].  
In a meta-analysis with 13 studies and 3 clinical tri-
als, Pal et al. found that vitamin D supplementation 
was associated with improved clinical outcomes only 
in patients receiving the drug post-COVID-19 diag-
nosis and not in those who had received vitamin D 
before diagnosis [56]. The authors of the latter study 
found several limitations of the included studies, 
among which were that the included studies did not 
have baseline vitamin D levels (before COVID-19 in-
fection); vitamin D supplementation was adminis-
tered irrespective of the baseline serum 25(OH)D lev-
els of the patients; and another limitation was that, 
except for two randomized controlled trials [57, 58], 
none of the studies mention the degree of rising in 
serum 25(OH)D levels post-vitamin D supplemen-

tation; hence, one can only speculate if adequate 
vitamin D levels had been achieved to exert immu-
nomodulatory effects [56]. Stroehlein et al. [11] also 
found no evidence to determine the benefits and 
harms of vitamin D supplementation as a treatment 
of COVID-19. In a meta-analytic study, Rawat et al. 
[12] also found no significant difference between 
vitamin-D supplementation on major health-related 
outcomes in COVID-19.

wHy Is IT ImporTAnT To deTermIne THe 
nATUre of THe AssocIATIon BeTween 
low serUm vITAmIn d And IncreAsed 
morTAlITy And severITy dUe To sArs-

CoV-2 infeCtion?
It is important to elucidate this issue for two reasons, 
first to avoid requests for tests of serum 25(OH)D  
in patients indiscriminately [59]; and secondly, to pre-
vent vitamin D toxicity reactions from overtreatment 
[60–62]. Even though vitamin D toxicity is not likely 
when oral supplements are taken below 2000 inter-
national units/day, before the COVID-19 pandemic,  
acute kidney injury due to overcorrection of hypovit-
aminosis D has been reported [63, 64]. On the other 
hand, before the pandemic, an increase in requests 
for potentially inappropriate testing for vitamin D 
deficiency had been observed [65, 66], which has 
led to the possibility of overtreatment [67, 68]. Dur-
ing the pandemic, Arroyo-Díaz et al. [69] found  
in a cross-sectional study higher in-hospital mortality 
and/or invasive mechanical ventilation among sub-
jects treated with vitamin D prior to hospital admis-
sion in the crude analysis, which was not confirmed 
in the fully adjusted model. Therefore, more studies 
are necessary on the safety of vitamin D supplemen-
tation in patients with severe forms of COVID-19. 

In conclusion, there is currently evidence to 
postulate that the association between low serum 
25(OH)D and increased mortality and severity due 
to SARS-CoV-2 infection is probably an example of 
reverse causality. This evidence comes from the neg-
ative results of this association in Mendelian rand-
omization studies and systematic and meta-analytic 
studies that do not observe a reduction in severity 
or mortality from vitamin D therapy in patients 
with severe COVID-19. Additionally, this hypothesis 
is reinforced by the antecedents of studies before 
the pandemic in relation to the fact that inflamma-
tory states decreased the concentration of serum 
25(OH)D.
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