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Insulin resistance and adaptation  
of pancreatic beta cells during pregnancy

ABSTRACT
Insulin resistance is described as reduced sensitivity of 
the body tissues to insulin. In pregnant women insulin 
resistance increases during each trimester of pregnancy 
due to the hormones produced by the placenta and 
many other factors which are not yet fully recognised. 
Growing insulin resistance leads to an increase in beta 
cell mass and number and insulin secretion, which 
helps to maintain glucose homeostasis and normal 
foetal development. However, in cases of severe insulin 
resistance, insufficient compensation of pancreatic 
beta cells or reduced pancreatic beta-cell function, 
glycaemic levels are increased and gestational diabetes 
mellitus develops.
The aim of the present review is to analyse the fac-
tors affecting insulin resistance and the adaptation of 
pancreatic beta cells during pregnancy and methods 
of insulin resistance assessment. (Clin Diabetol 2018; 
7, 5: 222–229)
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Introduction
Insulin resistance is described as reduced sensitiv-

ity of the body tissues to insulin — primarily muscle, 
adipose tissue and the liver, which consequently leads 

to disturbances in the metabolism of carbohydrates, 
lipids and proteins. Moreover, increased insulin levels 
in insulin-resistant patients have a mitogenic effect. 
The disturbance occurs in patients with obesity, type 2  
diabetes, hypertension, polycystic ovary syndrome 
(PCOS) and gestational diabetes mellitus (GDM). In 
healthy pregnant women a gradual increase in insulin 
resistance occurs due to the hormones produced by the 
placenta: human placental lactogen (hPL), estrogen, 
progestagen, human chorionic gonadotropin (hCG), 
growth hormone (GH), prolactin (PRL) and cortisol [1, 2].  
The placenta also produces significant amounts of cy-
tokines, which are also produced by adipose tissue, i.e. 
adipokines, such as leptin and TNFa [3]. This results in 
numerous metabolic changes that facilitate the provi-
sion of nutrients to the developing foetus.

Due to growing insulin resistance, an increase in 
the mass and amount of beta-cells and an increase 
of insulin secretion occure. Thanks to this the normal 
level of glucose, i.e. the primary energy substrate, is 
maintained, which is crucial for healthy foetal deve
lopment. The transport of glucose across the placenta 
occurs by facilitated diffusion along a concentration 
gradient, thus the amount of glucose delivered to the 
fetus depends on its concentration in the mother’s 
blood serum.

During the third trimester of pregnancy in healthy 
women, the degree of insulin resistance is comparable 
to that in patients with type 2 diabetes. During preg-
nancy, insulin sensitivity decreases by about 50–60% 
[4]. In cases of excessively increased insulin resistance, 
insufficient compensation of pancreatic beta cells 
(insufficient increase in insulin secretion) or decreased 
function of pancreatic beta cells, glycaemia increases 
and GDM develops [5]. 

A number of animals studies have been conducted 
which confirm the increase in the number and size of 
beta cells during pregnancy. However, there are very 
few studies assessing the function of beta cells and fac-
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tors affecting compensatory mechanisms in pregnant 
women. In our review work, we will focus on methods 
for assessing insulin resistance, factors affecting insulin 
resistance in pregnancy, and the adaptation of pancre-
atic beta cells during pregnancy.

Methods for assessing insulin  
resistance and insulin sensitivity

The gold standard for the assessment of insulin 
resistance is the hyperinsulinemic-euglycemic clamp 
technique, which is difficult to implement in pregnant 
women due to ethical issues [6]. The easiest and most 
frequently used insulin resistance index is the HOMA-
-IR index (Homeostatic Model Assessment for Insulin 
Resistance) calculated using the following formula: 
HOMA-IR = (fasting glucose concentration [mg/dL] × 
fasting insulin concentration [mIU/l]) divided by 405 
[7]. A more adequate study with proven very good cor-
relation with the hyperinsulinemic-euglycemic clamp is 
the calculation of the Matsuda insulin sensitivity index 
(ISOGTT) based on results obtained during a 75 g oral 
glucose tolerance test (OGTT) [8]. It is calculated using 
the following formula: ISOGTT = 10,000/√ [(FPG × FPI) 
× (G × I)], where FPG = fasting plasma glucose, FPI 
= fasting plasma insulin, G = mean glucose during 
OGTT and I — mean insulin during OGTT [9]. The lat-
est insulin sensitivity index proposed by Wagner et al. 
is the index of non-esterified fatty acids (NEFA-index), 
which includes body mass index (BMI), insulin levels 
during OGTT (0 min, 60 min and 120 min) and NEFA 
during OGTT (0 min and 120 min) [10]. The authors of 
that study emphasise that the concentration of NEFA is 
closely related to insulin sensitivity. The index was calcu-
lated based on a comparison of the hyperinsulinemic-
euglycemic clamp and OGTT with the use of insulin and 
NEFA concentrations in healthy non-pregnant subjects. 
It was calculated to be more useful in pregnant women 
to show increased insulin resistance than other previ-
ously used indices, e.g. the Matsuda index.

Factors affecting insulin  
resistance in pregnancy

The results of many studies confirmed that insulin 
resistance during pregnancy is related to BMI and, 
consequently, to the amount of adipose tissue before 
pregnancy and weight gain during pregnancy [11–13]. 
There is also evidence that insulin sensitivity depends 
on the levels of physical activity before and during 
pregnancy [13]. According to Marilyn Lacroix, glucose 
metabolism disorder during pregnancy indicates an 
existing pathology related to insulin resistance or insulin 
secretion, which in the future may lead to the develop-
ment of diabetes. Therefore, pregnancy is a ‘window’ to 

identifying women with an increased risk of developing 
diabetes type 2 in the future [2]. In overweight preg-
nant women, the development of diabetes is associated 
with insulin resistance which was already increased 
prior to pregnancy, while the hormones and cytokines 
secreted by the placenta increased it even further, hence 
contributing to the development of GDM. However, in 
addition to increasing insulin resistance, lean women 
who develop GDM also seem to have insulin secretory 
defects [14].

Insulin resistance and pancreatic beta cell dys-
function are the two major metabolic disturbances 
involved in the pathogenesis of GDM. Previous clinical 
and experimental studies indicated that adipose tissue 
dysfunction leads to disturbed production of cytokines, 
which are important factors in the development of 
GDM. Thus far, the importance of several hormones 
produced by adipose tissue has been well documented. 
The functions of leptin, adiponectin, resistin and pro-
inflammatory cytokines (tumour necrosis factor-alpha 
— TNF-alpha, interleukin-6 and C-reactive protein) have 
been particularly recognised.

Leptin regulates the amount of body fat and body 
weight by inhibiting the secretion of neuropeptide Y 
in the hypothalamus, as well as in adipose tissue, the 
liver and other organs [15]. It is produced primarily in 
adipose tissue, but also in the placenta [5, 16]. Its con-
centration increases with the amount of adipose tissue, 
weight gain and hyperinsulinaemia [17]. It inhibits the 
secretion of insulin from pancreatic beta cells. During 
pregnancy, leptin levels increase in the first and second 
trimesters, reaching their peak at week 28, and they 
are 2–3 times higher than in non-pregnant women. In 
the third trimester, leptin concentrations stabilise [17, 
18]. Although there are different opinions about the 
role of leptin in the development of GDM, most study 
results confirm that hyperleptinaemia during the first 
trimester of pregnancy is a predictor of GDM [5, 17, 19].

The role of adiponectin is also well recognised. Its 
concentrations are inversely proportional to the amount 
of adipose tissue, BMI and insulin resistance [16, 20]. 
It is produced predominantly in adipocytes, but also 
in the syncytiotrophoblast of the placenta [5, 16]. It 
increases the sensitivity of the body tissues to insulin. 
In normal pregnancy, the concentrations of adiponectin 
decrease during each trimester [4, 21, 22]. Numerous 
studies demonstrated that adiponectin concentrations 
in women with GDM are lower compared to the control 
group [20, 23–25]. It was also shown that its low con-
centrations during the first weeks of pregnancy are a 
clinical predictor for GDM development [19, 20, 26, 27].

The concentrations of resistin in normal pregnancy 
increase during the third trimester. It seems that resistin 
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affects carbohydrate metabolism and the development 
of insulin resistance. It is associated with the amount of 
adipose tissue and its increased concentration during 
pregnancy is probably related to body weight gain [17]. 
However, the role of resistin in insulin resistance and 
in the development of GDM is unclear and research-
ers hold divergent opinions on this issue [24, 28–34].

TNF-alpha is a pro-inflammatory cytokine which 
reduces insulin sensitivity and inhibits insulin secretion 
from pancreatic beta cells. A positive correlation was 
found with the amount of adipose tissue and a decrease 
in TNF-alpha concentration after slimming and weight 
loss [5]. TNF-alpha is produced by the placenta and is 
a potential mediator of insulin resistance during preg-
nancy [3]. Studies on pregnant women indicated that 
the concentrations of this cytokine increase during the 
second and third trimesters in patients with GDM. In 
the majority of studies higher TNF-alpha concentrations 
were found in patients with GDM compared to the 
control group [35–37]. In addition, positive correlations 
with BMI and insulin resistance and negative correla-
tions with insulin sensitivity were discovered [3, 5].

Studies are still carried out regarding many other, 
not yet fully recognised cytokines and adipokines 
which may be involved in the development of GDM 
and whose concentrations change during pregnancy, 
e.g. betatrophin, omentin-1, chemerin, fetuin-A, 
fetuin-B, fibroblast growth factors 19 and 21 (FGF19 
and FGF21), fibroblast growth factor 21 (FBF21), fatty 
acid binding proteins — fatty acid-binding protein 4 
(FABP4) and retinol binding proteins — retinol-binding 
protein 4 (RBP4).

Betatrophin is a recently discovered hormone 
which is produced in the liver and adipose tissue [38]. 
It takes part in the metabolism of lipids and is associ-
ated with insulin resistance [39, 40]. Its concentration 
is elevated in type 2 diabetes, obesity and gestational 
diabetes mellitus [41–46]. In our first prospective study 
of healthy pregnant and postpartum women, we de
monstrated that despite increasing insulin resistance 
and increasing triglyceride concentrations, the concen-
trations of betatrophin significantly decrease in women 
during pregnancy and increase 3 months after delivery, 
reaching identical concentration levels as in the control 
group of healthy non-pregnant women [47].

Fatty acid-binding protein 4 (FABP4) is an impor-
tant carrier of intracellular fatty acids [48]. Its role 
in the development of metabolic disorders, type 2 
diabetes and insulin resistance during pregnancy and 
GDM is of interest to many scientists. FABP4 seems to 
be important in maintaining glucose homeostasis, as 
its increased concentrations result in reduced uptake 
and utilisation of glucose by muscle and liver cells [49]. 

One study showed that higher FABP4 concentrations 
are associated with higher insulin resistance in patients 
with GDM, which may be one of the pathomechanisms 
responsible for GDM development [48]. Subsequent 
studies of larger patient groups confirmed that FABP4 
is associated with insulin resistance during pregnancy 
and its higher concentrations in the first trimester are 
associated with an increased risk of developing GDM 
and may be early clinical markers of GDM [49–51].

Other important cytokines in the pathogenesis of 
GDM are fibroblast growth factors 19 and 21 (FGF19 
and FGF21). FGF19 is mainly secreted in the small intes-
tine and has insulin-like effect [52]. FGF21 is secreted 
by adipose tissue, the pancreas and the liver and it 
has a glucagon-like effect. However, both molecules 
stimulate the uptake of glucose by adipocytes and 
are thus associated with improved glucose tolerance 
[52, 53]. Observation of concentration levels of these 
adipokines in pregnant women during the second 
trimester revealed decreased FGF19 concentrations 
and increased FGF21 concentrations in patients with 
gestational diabetes mellitus [52]. During the third 
trimester of pregnancy, serum FGF21 levels did not 
differ significantly in women with GDM compared to 
healthy ones, while being significantly higher in the 
placenta of women with GDM [54]. Both adipokines 
are strongly associated with insulin resistance [52, 53]. 
Low concentrations of FGF19 are probably important 
in the development of GDM, while elevated FGF21 
levels may be the mechanism that compensates  that 
disorder. Megia et al. showed in their work that there 
is a significant correlation between the levels of FGF21 
in umbilical cord blood and the BMI of the newborn 
and that its concentrations in the mother’s serum are 
similar to those observed in umbilical cord blood [55]. 
In another study, the concentrations of FGF21 in the 
serum of pregnant women were significantly correlated 
with fasting insulin, triglycerides and HOMA-IR concen-
trations, but no higher concentrations of the cytokine 
in GDM patients were found [53].

Retinol-binding protein (RBP4) is secreted in the 
liver and adipose tissue. It affects hepatic gluconeogen-
esis and, due to phosphoenolpyruvate carboxykinase 
(PEPCK), decreases the effects of insulin in muscles. 
Thus, it increases insulin resistance and is involved in the 
pathogenesis of type 2 diabetes [56, 57]. The adipokine 
is also being studied as a marker of insulin resistance 
and development of GDM, although research results 
on its effect on pregnant women are contradictory 
[58–64]. Hu S et al. in their meta-analysis involving 
over 1.200 patients, similarly to Huang QT et al. in 
their meta-analysis, found out that RBP4 is associated 
with GDM [65, 66]. Hence, more in-depth studies of its 



Anna Zielińska-Maciulewska et al., Insulin resistance and adaptation of pancreatic beta cells during pregnancy

225

concentration levels during each trimester of pregnancy 
and postpartum are needed.

Omentin-1 is also an adipokine produced in adi-
pose tissue and the placenta and it has a beneficial ef-
fect on insulin sensitivity. Its concentrations are lower 
in people with insulin resistance, i.e. those suffering 
from obesity, type 2 diabetes, PCOS, and GDM [67–69]. 
The highest adipokine concentrations in pregnant 
women were observed during the first trimester and 
they decreased during the second trimester [70]. Barker 
et al. showed that omentin-1 levels in obese women 
are higher in the placenta than in adipose tissue [71]. 
The authors of the study also demonstrated that the 
concentrations are significantly lower in non-obese 
women with GDM compared to non-obese pregnant 
women with normal glucose tolerance. However, no 
difference was indicated in obese women with GDM 
and normal glucose tolerance [71]. It was shown that 
omentin-1 concentrations lower than 38 ng/ml are 
associated with a 4-fold greater risk of developing 
GDM [67]. In a prospective study of pregnant women 
during the second and third trimesters, no significant 
differences in omentin-1 levels in the plasma of healthy 
women and those with GDM were identified. However, 
significantly lower concentrations of omentin-1 in um-
bilical cord blood of newborns and mothers with GDM 
were observed [72]. Although only a few reports on 
the concentrations of omentin-1 in pregnant women 
are available, the majority of them confirm that the 
lower concentrations are observed in GDM patients, 
which is probably associated with insulin resistance 
during pregnancy.

Chemerin is an adipokine produced by various tis-
sues, particularly adipose tissue [73]. It is also secreted 
by the placenta [74]. A study based on a very small 
sample (9 women with GDM and 8 healthy pregnant 
women) demonstrated that the concentrations of 
chemerin during the third trimester of pregnancy and 
3 months after delivery significantly differ in both 
groups. They are significantly lower and remain un-
changed after delivery in women with GDM, while 
significantly decreasing after delivery in healthy women 
[75]. Although subsequent studies did not confirm 
this observation, they showed statistically significantly 
higher concentrations of chemerin in patients with 
GDM compared to healthy women [76–78]. Neverthe-
less, in a study conducted by Pfau D. et al. no such 
differences were found [79]. In a study based on the 
largest patient sample (208 patients with GDM and 
300 control patients), significantly higher concentra-
tions (7-fold) of chemerin in patients with GDM and a 
strong correlation with HOMA-IR, fasting glucose and 
baby neonatal birth weight were observed [80]. Several 

studies also revealed positive correlations of chemerin 
with HOMA-IR [77, 79]. The concentrations of chemerin 
increase during pregnancy in both healthy and GDM 
patients [78]. During the third trimester of pregnancy 
chemerin levels are significantly higher in patients 
with GDM in peripheral blood, umbilical cord blood, 
adipose tissue and the placenta [79, 81]. Fluctuations 
in its concentrations during pregnancy and significant 
correlations with the insulin resistance index may sug-
gest its important role in the development of GDM.

Very few studies showed that fetuin-A and fetuin-B 
levels in pregnant women with GDM are higher than 
those in pregnant women with no carbohydrate disor-
ders. The levels of fetuin-A and fetuin-B decrease con-
siderably after delivery [82, 83]. Significant correlations 
between fetuin-A and HbA1c concentrations, levels of 
cholesterol and triglycerides were found [82]. Moreover, 
fetuin-B significantly correlates with HOMA-IR, fasting 
insulin, and free fatty acids [83]. The adipokines may 
also play an important role in potentiating insulin re-
sistance and in the development of metabolic changes 
in GDM [82, 83].

Another important factor affecting insulin re-
sistance are thyroid hormones, which are primarily 
responsible for the regulation of energy balance and 
metabolism. It was suggested that they may influence 
the development of insulin resistance during preg-
nancy [84]. Low fT4 levels during early pregnancy are 
associated with an increased risk of GDM [85]. It was 
also shown that women with GDM are at a higher 
risk of developing thyroid disease and post-partum 
thyroiditis [86].

To sum up, adipokines and thyroid hormones seem 
to be important factors in the pathophysiology of in-
sulin resistance and development of GDM. Due to the 
fact that there are very few studies on some cytokines 
and thyroid hormones during pregnancy, often based 
on small samples of women, further research in this 
area is needed.

Adaptation of pancreatic beta cells  
to increasing insulin resistance  
during pregnancy

From the first trimester of pregnancy, the number 
of pancreatic beta cells and their function increase, as 
there is a growing need for insulin in the subsequent 
stages of pregnancy [87]. In mice, a two- to five-fold 
increase in pancreatic beta cell mass during pregnancy 
occurs [88–90]. Van Assche et al. observed in their study 
of 5 women that pancreatic beta cell area increased 
2.4 times during pregnancy compared to non-pregnant 
women [91]. Butler et al. compared pancreatic beta 
cell morphology in a larger group, i.e. 18 patients 
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who died during pregnancy, 6 who died after delivery 
and 20 who were non-pregnant. They showed that 
pancreatic beta cell area increases during pregnancy 
1.4 times with no change in beta cell size compared to 
non-pregnant women [92]. Pregnant patients had more 
pancreatic beta cells of smaller size and more new islets 
with new pancreatic beta cells. In the exocrine part of 
the pancreas, insulin-producing single cells were more 
common in pregnant and postpartum women than in 
non-pregnant women [92]. Differences in the size and 
amount of beta cells in mice and women may be due to 
the duration of pregnancy (3 weeks vs. 9 months) [90]. 
Placental lactogen is the key factor in beta-cell prolifera-
tion during pregnancy in mice and, due to prolactin 
receptor (PRLR) in pancreatic beta cells, causes elevated 
expression of the serotonin HTR2B receptor [89, 93–95]. 
Beta cells return to pre-pregnancy levels immediately 
prior to delivery and during the postnatal period, when 
the concentrations of placental lactogen decrease and 
prolactin levels increase, as prolactin increases HTR1D 
expression and decreases HTR2B expression. Serotonin, 
as a neurotransmitter and paracrine-acting hormone, is 
produced by pancreatic beta cells during pregnancy in 
mice and due to its ability to affect the function of the 
above-described receptors it participates in the regula-
tion of beta-cell proliferation. This action was confirmed 
by treatment with serotonin in-vitro, which induced 
proliferation of pancreatic beta cells [95]. The serotonin 
produced by pancreatic beta cells of pregnant mice 
also increases insulin secretion after meals by activat-
ing the HTR3A receptor [96]. Blockade of this receptor 
has an effect on insulin secretion and glycaemia levels 
only in pregnant mice and no effect on non-pregnant 
mice is observed [96]. Another mechanism regulating 
the proliferation of beta cells in mice is the autonomic 
nervous system, whose activity is influenced by the 
central regulation of food intake and metabolism [97].

Unfortunately, not many studies have focused on 
humans and the exact mechanisms that are responsible 
for increasing the amount of beta cells in people are 
unknown. In an in-vitro cell culture study of human 
pancreatic beta cells, it was shown that the admi
nistration of prolactin, placental lactogen and growth 
hormone results in increased insulin secretion [98]. Beta 
cells in humans have a different proliferative potential 
and new beta cells are probably formed from stem 
cells. Unlike in mice, they are not generated from the 
proliferation of existing beta cells [92]. The mechanisms 
responsible for the proliferation of beta cells in humans 
are not well understood, and pregnancy is an additional 
factor that makes it difficult to conduct tests due to 
ethical issues. Hence, further cell culture research is 

needed, which may give us a better understanding of 
the factors affecting beta cell proliferation in humans.

Conclusions
Bearing in mind the fact that obesity and diabetes, 

including both GDM and type 2 diabetes, have reached 
epidemic proportions in the modern world, there has 
been an even greater need to expand our knowledge 
about insulin resistance. This is necessary in order to 
bring us closer to finding new therapeutic solutions 
that will help to reduce the complications that are 
linked to insulin resistance. We know that obesity is 
associated with adipokine production disorders and 
that obese women are more likely to develop GDM, 
which adversely affects foetal development and in-
creases the risk of developing type 2 diabetes in both 
the mother and her child. Therefore, research into the 
pathogenesis of GDM and looking for new factors 
that have a predictive value and would allow screen-
ing for women at risk who should receive specialist 
care prior to conception to avoid the development of 
GDM are important. Adipokines are considered to be 
such potential factors and those that have been most 
thoroughly examined include: leptin, adiponectin, re-
sistin and proinflammatory cytokines, all of which are 
described in the present article. However, initial reports 
on the role of other factors, including betatrofine, 
omentine-1, chemerin, fetuin, FGF19, FGF21, FABP4 
and RBP-4, are equally interesting. Further prospective 
studies are needed on larger samples of women in order 
to determine their importance in the development of 
insulin resistance, not only during pregnancy, but also 
in general population.
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