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Role of purinergic signalling and  
proinflammatory cytokines in diabetes

ABSTRACT 
Extracellular purines activate P1 adenosine receptors 
and P2 nucleotide receptors. These receptors are pre-
sent on the pancreatic islet cells as well as on hepato-
cytes, adipocytes, pancreatic blood vessels and nerves. 
ATP is released together with insulin from b-cell gran-
ules in response to a rapid decrease in blood glucose 
levels. The ATP-dependent P2X receptor activation on 
pancreatic b-cells results in a positive autocrine signal 
and subsequent insulin secretion. Adenosine, through 
activation of P1 receptors present on adipocytes and 
pancreatic islet cells, inhibits the release of insulin. 
Adenosine activates A2B receptors thereby stimulating 
production of IL-6 and other cytokines, which increases 
insulin resistance. Interleukin-6 also plays an important 
role in diabetes. In type 2 diabetes and obesity, the 
long-term increase of IL-6 concentration in blood above 
5 pg/mL leads to the chronic and permanent increase 
in expression of SOCS3, contributing to the increase in 
insulin resistance in cells of the skeletal muscles, liver 
and adipose tissue. In diabetes there is an increased 
synthesis and release of pro-inflammatory cytokines, 
which cause the damage of the pancreatic islet cells, 
and in type 2 diabetes cause the development of insulin 
resistance. Ecto-enzymes metabolizing nucleotides are 
involved in the termination of the nucleotide signalling 
pathway and play the key role in regulation of extracel-
lular ATP concentration. Ecto-NTPDases in cooperation 
with 5’-nucleotidase may significantly increase ecto-
adenosine concentration. NTPDase3 activity has only 

been demonstrated on Langerhans cells. NTPDase3 
may influence the secretion of insulin by hydrolysing 
adenine nucleotides. In diabetes the pro-inflammatory 
cytokines such as interleukin 1b (IL-1b), tumour ne-
crosis factor-a (TNF-a) and interferon-g (IFN-g), as well 
as pancreatic derived factor PANDER are involved in 
the apoptosis of pancreatic b-cells. This causes distur-
bance of the balance between pro-inflammatory and 
protective cytokines. We believe that neutralization of 
pro-inflammatory cytokines, especially interleukin 1b, 
with the IL-1 receptor antagonist (IL-1Ra) and/or IL-1b 
antibodies might cause the reduction of the inflamma-
tory process in pancreas islets, normalize concentration 
of glucose in blood and decrease the insulin resistance. 
(Clin Diabetol 2017; 6, 3: 90–100)
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Introduction
Pathophysiological disorders in diabetes consist of 

abnormal glucose metabolism and transport, which is 
a consequence of inadequate insulin secretion. These 
disorders lead to hyperglycaemia, the formation of free 
fatty acids (FFAs) and the release of proinflammatory 
cytokines. In diabetes, metabolic disorders not only 
affect the pancreas, but also other organs such as the 
liver, skeletal muscles and adipose tissue. Pathological 
processes include: disorders of cardiovascular, urinary 
and gastrointestinal systems as well as abnormal skin 
healing, sexual dysfunction and muscle weakness. 
Usually, diabetes complications, such as micro- and 
macroangiopathy, retinopathy and polyneuropathy, ap-
pear within a few years after establishing the diagnosis 
of diabetes, but sometimes they develop before the 
disease is detected. Type 1 diabetes (T1D), an insulin-
dependent disease, is an autoimmune disease that 
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becomes clinically apparent due to environmental fac-
tors, especially viral infections, in patients with genetic 
predisposition [1, 2]. Symptoms of diabetes appear 
when about 80% of b-cells are damaged. The course of 
the disease is characterized by a progressive decrease 
in the number of pancreatic cells and deterioration of 
their function, and patients require administration of 
exogenous insulin. There are various factors, especially 
proinflammatory cytokines, responsible for b-cell dam-
age during the course of diabetes. In type 2 diabetes 
(T2D), insulin secretion may be almost normal at first, 
but insulin resistance is clearly present [1, 2]. Type 2  
diabetes is usually characterized by a later onset, 
often accompanied by obesity, a considerable auto-
inflammatory process in pancreatic islets, a low-grade 
inflammation of adipocytes and increased insulin resist-
ance of hepatocytes and skeletal muscle cells [1, 2]. It is 
thought that obesity itself causes an increase in the level 
of proinflammatory cytokines in the blood [3]. Similarly, 
hyperglycaemia promotes cytokine secretion, which 
was demonstrated in human endothelial cell culture 
[4]. The mechanisms responsible for insulin resistance 
include: oxidative stress, endoplasmic reticulum stress, 
amyloid deposits in pancreatic islets, accumulation of 
ectopic lipids in muscles, liver and pancreas, and pro-
cesses such as lipotoxicity and glucotoxicity [3, 5–7]. 
Oxidative stress and endoplasmic reticulum stress lead 
to increased intra-cellular production of proinflamma-
tory cytokines, thus inducing inflammatory processes 
[8, 9]. In diabetes, the pancreas is infiltrated by immune 
cells, such as macrophages, which are also the source 
of pro-inflammatory cytokines.

Purinergic receptors were first defined in 1976 and 
two years later they were divided into P2 receptors, 
which are activated by adenine nucleic acids (ATP and 

ADP) and pyrimidines (UTP and UDP) and P1 receptors, 
which are activated specifically by adenine. Addition-
ally, P2 receptors were subdivided into P2X ionotropic 
receptors and metabotropic P2Y receptors, whereas 
P1 receptors were subdivided into A1, A2A, A2B and A3 
subtypes. Adenosine A1 and A3 receptors are Gi-protein-
dependent and inhibit adenylate cyclase, whereas A2A 
and A2B receptors are Gs- and Go-protein-dependent 
receptors stimulating cyclic adenosine monophosphate 
(AMP) formation [1, 2]. The presence of seven subtypes 
of P2X receptors and eight subtypes of P2Y receptors 
have been demonstrated [1, 2]. Most P2Y receptors are 
Gq-/G11-dependent and they activate C-b phospholipase 
(PLC-b), except for P2Y12, P2Y13 and P2Y14 receptors, 
which are Gi-dependent and inhibit adenylate cyclase, 
and P2Y11 receptor, which is Gs- and Gq-dependent 
[1, 2]. Enzymes such as ecto-nucleoside triphosphate 
diphosphohydrolases (NTPDases) degrade adenine 
nucleotides (ATP and ADP) to AMP, and then AMP is 
transformed into adenosine by 5’-nucleotidase. In the 
presence of adenosine deaminase (ADA) adenosine is 
converted to inosine, and/or in the presence of adeno-
sine kinase (AKA) belonging to the ribokinase family 
it is converted by phosphorylation into 5’-AMP. The 
activity of the following enzymes: NTPDase1, NTPDase2, 
NTPDase3 and 5’nucleotidease was demonstrated on 
human and animal endocrine and exocrine pancreatic 
cells and blood vessels (Fig. 1) [10–12].

Pathological processes in diabetes are mediated 
by purines and cytokines. In type 2 diabetes, these 
compounds promote insulin resistance, which is the 
main factor responsible for the progression of the dis-
ease. Among purines, ATP is of particular importance, 
because it activates the P2X3 receptor present on the 
b-cells, which generates a positive autocrine signal 

Figure 1. Metabolism of ecto-nucleotides and adenine nucleosides and types of purinergic receptors
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resulting in insulin secretion. Adenosine, by activating 
A receptors differently than ATP, inhibits insulin secre-
tion and, together with ADP and 5’-AMP, stimulates the 
secretion of glucagon. Proinflammatory cytokines — 
interleukin 1b (IL-1b), tumour necrosis factor-a (TNF-a) 
and interferon-g (IFN-g) — have proapoptotic effect on 
b-cells. These cytokines cause decrease in insulin secre-
tion and reduction in the amount of pancreatic b-cells.

The influence of ATP and purinergic  
receptors of b-cells on insulin secretion

ATP affects the secretion of insulin through the 
intracellular mechanism and extracellular activation of 
the P2 receptors present on the b-cell surface [13]. Since 
ATP is produced intracellularly by the glycolysis and by 
the mitochondrial oxidative process, mitochondrial dys-
function of b-cells causes a reduction in the production 
and release of ATP and insulin. At the cellular level, mi-
tochondrial dysfunction is primarily responsible for the 
progression of diabetes. Various intracellular pathways 
are involved in the secretion of insulin from the b-cells, 
which are affected by ATP in the first phase of the pro-
cess [14]. ATP increases insulin secretion by activation 
of P2X and P2Y receptors present on b-cells, and the 
effect of ATP is dependent on blood glucose [15–17]. 
Studies on animals have demonstrated the presence of 
the following P2X receptors: P2X1, P2X2, P2X3, P2X4, 
P2X6 and P2X7 [12, 18–20]. There are contradictory 
reports on the presence of the purinergic receptors in 
humans. The presence of P2X1, P2X2, P2X4 and P2X6 
receptors (detected in rats) [19, 20], has not been 
confirmed so far. Currently, there are no doubts about 
the presence of the following receptors on human  
b-cells: P2X3 (immunocytochemistry detected), P2X5 [1, 
2], P2X7 [1, 2], P2Y11 (RT-PCR, Western blot analysis, 
immunofluorescence detected) [21], P2Y12 (RT-PCR, 
Western blot analysis, immunofluorescence detected) 
[21]. The source of extracellular ATP is both exocytosis 
of ATP from b-cell granules and release from the pan-
creatic nerve endings [17, 22]. It was found in 1975 
that ATP and insulin are secreted together by exocytosis 
from pancreatic b-cell granules [23]. One year later it 
was demonstrated that ATP stimulates glucagon and 
insulin secretion, and that this process is dependent on 
blood glucose [24]. At high blood glucose levels, P2X 
receptor antagonists cause a 65% decrease in insulin 
secretion [19]. Cellular granules containing insulin also 
contain ATP and ADP, and their release is regulated by 
activation of the heterologous P2X2 receptor present 
on b-cells [25]. In addition, other molecules, such 
as 5-hydroxytryptamine, gamma-aminobutyric acid, 
glutamates and zinc, are released along with ATP, 
and these molecules may affect insulin secretion by 

autocrine mechanism, similarly to ATP [19, 20, 25]. In 
rats, activation of P2X receptors on pancreatic b-cells 
results in transient increase in insulin secretion, even at 
low glucose concentrations [17]. Under physiological 
conditions, the P2X7 receptor does not participate in 
b-cell metabolism, since activation of this receptor oc-
curs only at high concentrations of ATP, above 100 μM. 
P2X3 receptors are particularly important in humans. 
P2X3 receptor activation generates a positive autocrine 
signal (autocrine feedback loop) and its amplification, 
which results in insulin secretion [19]. In response to 
the rapid decrease in blood glucose, ATP released along 
with insulin from b-cell granules activates the P2X3 
receptor, which causes an increase in intracellular Ca2+  
concentration and thereby amplifies insulin release.

Numerous P2Y receptors are present on pancre-
atic b-cells. Previous studies on animal models did not 
provide a clear answer as to the role of P2 receptors 
in insulin secretion. In 2001 Fernandez-Alvarez et al. 
demonstrated for the first time in humans that P2 re-
ceptor agonists cause increased insulin secretion [26]. 
Studies of pancreatic cancer cells (insulinoma) showed 
the presence of P2Y receptors such as P2Y1, P2Y2, P2Y4, 
P2Y6, P2Y11, P2Y12 and P2Y13 [18]. Currently, we do not 
know the effects of activation of most of these recep-
tors, and there are significant differences in their pres-
ence between different species of animals. P2Y11 and 
P2Y12 receptors [1, 2, 27] have been shown on human 
pancreatic b-cells. Some reports indicate that activation 
of P2Y receptors by adenine nucleotides may increase 
or decrease insulin secretion, depending on the type of 
receptor. However, there is predominant opinion that 
activation of P2Y receptors increases glucose-induced 
insulin secretion. In particular, activation of the P2Y4 
receptor stimulates the secretion of insulin irrespective 
of blood glucose [18]. It has been shown that activation 
of P2Y1 and P2Y6 receptors inhibits insulin secretion at 
high blood glucose levels [28]. Another study on these 
receptors showed that the activation of P2Y1 and P2Y6 
receptors stimulated insulin secretion at glucose con-
centrations above 8 mM [29]. In mice, ADP may both 
inhibit insulin secretion by P2Y13 receptor activation and 
induce this process by activating the P2Y1 receptor [30]. 
It is supposed that the ADP-activated P2Y1 receptor 
plays a key role in the insulin secretion by b-cells [11, 
31]. It seems likely that the treatment with ATP and ADP 
analogues will increase the secretion of insulin and, in 
consequence, decrease glycaemia.

The role of adenosine and P1  
receptors in diabetes

Adenosine activates four subtypes of G protein-
-dependent receptors (A1, A2A, A2B and A3) [32]. The 
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presence of adenosine receptors A1 and A2B has been 
shown on pancreatic b-cells, although the role of these 
receptors in insulin secretion is unclear [12, 33–37]. 
Adenosine inhibits the secretion of insulin and, along 
with ADP and 5’-AMP, stimulates the secretion of 
glucagon [38, 39]. Stimulation of glucagon secretion 
by adenosine and lack of such effect on secretion 
of insulin suggest that a-cells are more sensitive to 
adenosine than b-cells. Töpfer et al. have demon-
strated that administration of A1 receptor agonists 
results in increased insulin sensitivity and a decrease 
in free fatty acids and triglycerides [40]. Activation of 
the A1 receptor by selective and non-selective agonists 
reduces insulin secretion [40]. Experimental studies 
on animals have shown that activation of A1 recep-
tors causes significant side effects, which result from 
the activation of these receptors present in the heart 
and blood vessels, which considerably limits the use 
of these receptors for the treatment of diabetes [41]. 
Side effects include hypotension and bradycardia, 
decreased atrial contractility, impaired renal function, 
and the release of neurotransmitters. Activation of A1 
receptor present on adipocytes results in inhibition of 
adenylate cyclase, decreased levels of cyclic adenosine 
monophosphate (cAMP), suppression of protein kinase 
A and, consequently, inhibition of lipolysis. In 1972, 
Fain et al. found that adenosine and adenosine ana-
logues acted antagonistically to catecholamines, which 
stimulate cAMP formation and thereby induce lipolysis 
in adipocytes [42]. In 1961, Dole has demonstrated in 
rats that adenosine and some of its metabolites inhibit 
the conversion of triglycerides (TGs) to FFA [43]. Previ-
ously, this was suggested by the studies performed by 
Schwabe who found that the addition of adenosine 
deaminase to fat cell culture supressed lipolysis [44, 45]. 
Dhalla et al. have described the presumed mechanism 
of suppressing lipolysis by adenosine [41].

It is suspected that the inhibition of lipolysis in adi-
pocytes is indirectly mediated by A1 receptor activation, 
resulting in inhibition of adenylate cyclase, followed by 
a decrease in cAMP concentration. In turn, the decline 
in cAMP levels inhibits protein kinase A (PKA), and this 
enzyme supresses lipases, such as hormone-sensitive 
lipase (HSL) and adipose triglyceride lipase (ATGL). This 
process leads directly to the suppression of triglyceride 
conversion into free fatty acids [41]. We suppose that 
the pharmacological inhibition of lipolysis aimed at 
lowering blood levels of free fatty acids may be an 
effective treatment for type 2 diabetes. Dipyridamole, 
a medication used in cardiovascular diseases, inhibits 
adenosine reuptake and lowers blood glucose, free 
fatty acids and triglycerides [46]. Studies on various 
A1 receptor agonists are performed in order to search 

for potential antilipidaemic agents, and some of these 
compounds are considered for clinical trials. Among the 
A1 receptor agonists that have been studied in the past 
or are currently under investigation are: SDZ WAG-994 
(N-cyclohexyl-2’-O-methyladenosine), GR79236 (N [(1S, 
2S)-2-hydroxycyclopentyl]-adenosine) and others such 
as ARA and CVT-3619 [41]. These compounds inhibit 
lipolysis in adipocytes, effectively lowering blood levels 
of free fatty acids and glucose.

Adipose tissue produces proinflammatory com-
pounds, such as interleukine-6, C-reactive protein 
(CRP) and plasminogen activator inhibitor 1 (PAI-1), 
which increase tissue resistance to insulin [47, 48]. 
Adenosine activates A2B receptors and thereby con-
tributes to increased insulin resistance by affecting the 
production of IL-6 and other cytokines. Animal studies 
confirm that A2B receptor activation increases serum 
IL-6 levels [49, 50]. Surprisingly, study results suggest 
that IL-6 may both be involved in the development of 
insulin resistance and improve insulin sensitivity [51, 
52]. In type 2 diabetes, activation of AMP-activated 
protein kinase (AMPK) and the involvement of such 
molecules as leptin, SOCS3 and SOCS1 (suppressor of 
cytokine signalling) increases insulin resistance, which is 
responsible for the disease progression [52–54]. Chroni-
cally elevated IL-6 levels increase SOCS3 and SOCS1 
protein expression, contributing to increased insulin 
resistance in skeletal muscles, liver and adipose tissue. 
Under physiological conditions, e.g. after exercise, the 
concentration of IL-6 in the blood increases significantly 
and then returns to baseline level in a short time. Such 
sudden and short-term increase in IL-6 levels does not 
lead to an increase in SOCS3 expression, but increases 
insulin sensitivity [52]. Thus, it is desirable to obtain 
a short-term increase in IL-6 levels (e.g. by moderate 
exercise) in order to maintain normal peripheral tissue 
sensitivity to insulin [52]. Contrary to this, the long-term 
increase in IL-6 levels that occurs in type 2 diabetes 
and obesity leads to chronic and persistent increases 
in SOCS3 expression [52].

Since adenosine A2B receptors are involved in mac-
rophage activation, it is supposed that the activation 
of these receptors affects the inflammatory process of 
adipose tissue and the development of insulin resist-
ance. Recently published results from the studies of 
Csók et al. have shown that in A2BAR-knockout mice 
(A2BR

–/–) macrophages activated via alternative way are 
lacking some transcription factors such as CCAAT (en-
hancer binding protein b, interferon regulatory factor 4 
and peroxisome proliferator-activated receptor b) [48].  
In addition, in vitro studies have shown that A2B receptor 
activation suppresses those inflammatory and metabolic 
processes in macrophages that involve free fatty acids. 
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Adenosine, through activation of A2B receptors, contrib-
utes to increased insulin resistance by the influence on 
the production of IL-6 and other cytokines. Activation 
of A2B receptors results in increased serum IL-6. It is sup-
posed that in patients with diabetes administration of 
adenosine antagonists and adenosine degradation by 
adenosine deaminase may reduce insulin resistance in 
skeletal muscles [55, 56]. The results of studies by Figler 
et al. suggest that A2B receptors blockade may be an 
effective way to manage insulin resistance by reducing 
hepatic glucose production (HGP) and by reducing the 
formation of IL-6 and other cytokines [57].

Adenosine in the extracellular space affects the 
transport of glucose into striated muscle cells; in myocar-
diocytes and adipocytes it increases the insulin-stimulated 
glucose transport into the cells. The conversion of adeno-
sine to inosine by adenosine deaminase or blockade of 
adenosine by adenosine receptor antagonists (CPDPX, 
8-cyclopentl-1,3-dipropylxanthine) results in a decrease 
in insulin-stimulated glucose transport in skeletal muscles 
[58]. This process may be induced by the reduction of the 
number of GLUT4 transporters on the surface of the cells 
and/or the decrease in the activity of these transporters 
in the glucose transport into cells. Reduced expression of 
glucose transporters on the surface of cells is strictly re-
sponsible for decreased effectiveness of insulin in glucose 
transport into skeletal muscle cells and adipocytes, which 
contributes to the development of insulin resistance [58, 
59]. Han et al showed that adenosine affects contraction-
stimulated glucose transport and/or insulin-stimulated 
glucose transport [58].

The role of ecto-enzymes in diabetes and 
their potential therapeutic usefulness

The activity of enzymes involved in the metabolism 
of nucleotides has been demonstrated on pancreatic 
islet, follicular and ductal cells as well as in blood ves-
sels. Ecto-nucleoside triphosphate diphosphohydro-
lases (NTPDases) present on the surface of these cells 
play a crucial role in nucleotide transformation. So far, 
four E-NTPDases present on the cytoplasmic membrane 
have been cloned, differing in location and properties: 
NTPDase1 (apyrase/CD39), NTPDase2, NTPDase3 and 
NTPDase8 [60, 61]. In humans, NTPDase1 activity was 
observed on acinar cells and in blood vessels and capil-
laries within the pancreas. NTPDase2 activity has been 
demonstrated on follicular cells, on cells surrounding 
pancreatic islets and in capillaries. NTPDase3 activity 
was demonstrated only on the cells of islets of Langer-
hans. High activity of NTPDases has been demonstrated 
in patients with type 2 diabetes [62]. No 5’-nucleotidase 
activity was observed on pancreatic islet cells, and such 
activity has been demonstrated only in the capillaries 

within the Langerhans islets [11, 63]. NTPDase1 hy-
drolyses both ATP and ADP, NTPDase2 hydrolyses ADP, 
and NTPDase3 is characterized by intermediate profile 
of action (hydrolysis) [61]. Hydrolysis of ATP and ADP 
results in the formation of AMP, which is converted to 
adenosine by 5’-nucleotidase.

NTPDase1 involvement in insulin secretion has 
been confirmed by the results of studies in which the 
administration of apyrase inhibitor ARL67156 resulted 
in increased insulin secretion [64–66]. Thus, apyrase 
reduces insulin secretion by extracellular degradation 
of ATP and ADP, but it also participates, together with 
5’-nucleotidase, in formation of adenosine, which prob-
ably slightly inhibits insulin secretion through activation 
of P1 receptors. The surprising reports of Jacques-Silva 
et al. suggest that the conversion of adenosine to ino-
sine by adenosine deaminase does not influence the 
effects of apyrase and, consequently, insulin secretion. 
These results were confirmed using the P1-CGS15943 
receptor antagonist [19, 20].

The activity of NTPDase3 in humans has been dem-
onstrated only on Langerhans islet cells of the pancreas: 
a, b, d and PP cells [11, 67]. The presence of NTPDase3 
on b-cells suggests that this enzyme may affect insulin 
secretion by participating in the hydrolysis of adenine 
nucleotides, and thereby affect the activation of P2 
receptors. Animal studies have confirmed that this 
process is possible [11]. The studies by Jacques-Silva 
in humans have shown that the ecto-nucleotidase 
inhibitor ARL 67156 markedly increases insulin secre-
tion at low blood glucose levels [19, 20]. Monoclonal 
antibodies were used as the specific inhibitor of human 
NTPDase3 in experimental studies [68].

Presumably, the decrease in ecto-5’-nucleotidase 
activity should result in an increase in extracellular 
adenosine level, which may affect insulin secretion 
[69]. Basal micromolar concentration of adenosine 
in isolated pancreatic islets is sufficient to stimulate 
secretion of glucagon and inhibit insulin secretion by 
A1 receptor activation [14, 70].

The role of cytokines in b-cell  
function disorders

The mechanism of pancreatic islet cell disorders 
is different in type 1 and type 2 diabetes. In type 1 
diabetes, a decrease in insulin production is caused 
by progressive damage of b-cells by autoimmune 
apoptosis, and the process involves proinflammatory 
cytokines [71, 72]. In type 2 diabetes, b-cell dysfunc-
tion and progressive decline in the number of these 
cells is accompanied by an increase in blood levels 
of cytokines, chemokines and free fatty acids and 
chronic hyperglycaemia [72, 73]. In type 2 diabetes, 
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the adipose tissue releases free fatty acids, hormones, 
and cytokines. Moreover, free fatty acids also contribute 
to an increase in the release of cytokines such as IL-1b, 
IL-6 and IL-8 [73]. Chronic exposure of b-cells to these 
compounds causes excessive formation and release of 
reactive oxygen species and the activation of caspases. 
These processes lead to inhibition of insulin secretion 
and promote apoptosis of pancreatic b-cells [72].

The involvement of proinflammatory cytokines 
such as interleukin-1b, tumour necrosis factor-a and 
interferon-g is well known in type 1 diabetes [72, 74]. 
Elevated levels of these cytokines were found both in 
the blood and in the cells of the islets of Langerhans. 
In diabetes, the pancreas is infiltrated by some immune 
cells such as lymphocytes and macrophages, and these 
cells are also a source of proinflammatory cytokines 
[72, 74, 75]. In addition, adipose tissue is an important 
source of cytokines. Cytokines produced and released 
from adipose tissue are termed adipocytokines [72, 
76]. These compounds are divided into adipocyte-
specific cytokines such as leptin, resistin, adiponectin, 
visfatin and omentin, and non-specific cytokines such 
as IL-1b, IL-6 and TNF-a [72, 76, 77]. Recently, the pres-
ence of a protein with a cytokine-like structure called 
pancreas-derived factor (PANDER) has been detected 
on pancreatic cells. It is believed that this protein is 
involved in apoptosis of b-cells [78, 79]. Among the 
secreted cytokines are proapoptotic and proinflam-
matory compounds such as IL-1b, TNF-a, IFN-g and 
resistin, which also inhibit insulin secretion, as well 
as b-cell-protective compounds such as adiponectin 
and visfatin. Thus, in the course of diabetes, the bal-
ance between the amount of proinflammatory and 
protective cytokines is impaired against the protective 
cytokines due to increased production and secretion 
of proinflammatory cytokines.

IL-1b
IL-1b is one of the most important proinflamma-

tory and proapoptotic cytokines responsible for b-cell 
dysfunction and is closely related to the pathogenesis of 
type 2 diabetes. IL-1b activity is dependent on caspase 1,  
which is released from adipocytes by free fatty acids 
[73]. The effect of IL-1b on b-cells is a decrease in insulin 
secretion and in the number of pancreatic b-cells [80]. It is 
believed that there is a close relationship between inflam-
matory processes and the occurrence of insulin resistance, 
which determines the development of type 2 diabetes in 
the future [3, 7, 81–83]. The auto-inflammatory processes 
of the pancreas are caused not only by IL-1b, but also by 
glucose itself, free fatty acids and leptin [80].

In b-pancreatic cells, IL-1b affects two metabolic 
pathways. On the one hand, it activates mitogen-acti-

vated protein kinases (MAPKs), including extracellular 
signal-regulated kinase (ERK), and on the other hand, it 
affects the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB) [84]. NF-kB is a protein complex 
acting as a transcription factor. It occurs in almost all 
cells involved in the cellular response to stimuli such 
as stress, cytokines, free radicals, or antigens. Both 
pathways are necessary for the expression of the in-
ducible nitric oxide synthase gene (iNOS), which, along 
with IL-1b, is involved in the b-cell death process [84]. 
Chronic activation of NF-kB causes a sustained decrease 
in expression of b-cell-specific proteins such as insulin, 
glucose transporter 2 (GLUT-2), pancreatic and duo-
denal homeobox 1 (PDX-1), which coincides with the 
increase in iNOS activity [72]. Nitric oxide synthase is 
an enzyme involved in the synthesis of nitric oxide (II) 
from the nitrogen residue of L-arginine in the presence 
of NADPH and molecular oxygen. This enzyme is present 
on the cells of the immune and cardiovascular systems. 
Compounds such as sulphoraphane, radix clematidis 
extract, guggulsterone and others protect b-cells from 
cytokine-induced apoptosis (IL-1b, IFN-g) by inhibiting 
NF-kB activation and iNOS expression [85–87].

In humans, administration of an IL-1 receptor an-
tagonist (IL-1Ra) inhibits the expression of proinflam-
matory factors, whose release is mediated by free fatty 
acids [73]. It is suspected that administration of an IL-1b 
receptor antagonist or IL-1b neutralizing antibody may 
diminish inflammatory processes of the pancreas and 
thereby reduce disorders of insulin production and 
secretion [73, 80, 82, 83].

Another potential mechanism of induction of 
pancreatic b-cell apoptosis by IL-1b and IFN-g is dam-
age to the endoplasmic reticulum (ER) by influencing 
the Ca2+ pump [88]. Maedler et al. have shown that 
incubation for 20 hours of human pancreatic cells at 
high glucose concentrations results in a significant 
increase in IL-1b production by b-cells [89]. These ob-
servations suggest the involvement of IL-1b in the b-cell 
glucotoxicity process.

Hope for a new treatment for type 2 diabetes was 
offered by the study of Osborn et al [90]. The authors 
administered IL-1b antibodies to animals. After 13 
weeks of treatment with the antibodies, decrease in 
glycated haemoglobin, serum proinsulin and insulin 
levels as well as reduction in pancreatic islet size were 
observed. Neutralization of IL-1b also resulted in signifi-
cant reductions in serum amyloid A (SAA), which can be 
considered as a marker of pancreatic inflammation [90].

Another potential treatment for patients with 
diabetes is the administration of an IL-1 receptor an-
tagonist [75, 91–93]. Studies on animal have shown 
that the administration of an IL-1 receptor antagonist 
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in animals reduces the in vitro release of proinflam-
matory cytokines and chemokines [75]. In vivo studies 
showed that administration of IL-1 receptor antagonist 
reduced hyperglycaemia, decreased proinsulin/insulin 
ratio and improved insulin sensitivity [75]. Additionally, 
a reduction of secretion proinflammatory chemokines 
and cytokines, e.g. IL-1b, IL-6, TNF-a, was observed [75]. 
Also, in patients type 2 diabetes, administration of the 
recombinant IL-1 receptor antagonist anakinra resulted 
in significant reductions in glycated haemoglobin, 
fasting plasma glucose, proinsulin/insulin ratio and 
IL-6 blood levels [82, 91]. However, insulin resistance 
remained unchanged [91].

TNF-a and IFN-g
The mechanism of action of TNF-a and IFN-g in the 

apoptosis of Langerhans islet cells has not been fully 
explained [94]. It is well known that TNF-a and IFN-g 
induce apoptosis of b-cells and show synergistic effects 
in this regard by activation of Ca2+ calcium channels 
leading to mitochondrial dysfunction and caspase ac-
tivation [95]. The process of death of b-cells involving 
these cytokines is mediated by interferon regulator 
factor 1 (IRF-1). X chromosome-linked inhibitor of XIAP 
(X-XIAP), an anti-apoptotic protein, protects b-cells 
against the harmful effects of TNF-a and IFN-g [72].

In patients with type 2 diabetes, elevated blood 
TNF-a levels were found [71, 96]. In animals, adipocyte 
production of TNF-a has been shown to induce inflam-
matory processes, which is the background of insulin 
resistance in type 2 diabetes [8, 97]. Steinberg et al. 
have shown that activation of TNF receptor (TNFR) on 
skeletal muscle cells by TNF-a reduces 5’AMP-activated 
protein kinase (AMPK) activity through increased ac-
tivity of protein phosphatase 2C (PP2C), which may 
be one of the reasons for insulin resistance [97]. This 
process, in turn, in vitro and in vivo, lowers the phos-
phorylation of acetyl-CoA carboxylase (ACC), and then 
inhibits fatty acid oxidation, increases the storage of 
diacylglycerol (DAG) in skeletal muscles and enhances 
insulin resistance [97]. The increase in TNF-a coexists 
especially with obesity. Metformin, a drug used in the 
treatment of diabetes, indirectly causes an increase in 
AMPK activity, resulting in increased glucose uptake 
by skeletal muscle cells and an increase in fatty acid 
oxidation in the mitochondria. IFN-g increases the ex-
pression of pancreatic-derived factor, which indicates 
that this cytokine also participates in the pathogenesis 
of diabetes and contributes to the death of b-cells [98].

IL-6
The role of IL-6 in inducing inflammatory processes 

is ambiguous. There are reports of its pro-inflammatory 

and protective effects. Intleukin-6 levels have been 
shown to be elevated in patients with type 1 and type 2  
diabetes [71, 99, 100]. In healthy people, blood levels 
of IL-6 are less than 5 pg/mL [99]. Different cells are ca-
pable of producing and releasing IL-6; however, adipose 
tissue is responsible for the release of approximately 
10–35% of peripheral blood IL-6 concentration. Im-
mune cells, especially macrophages that are present in 
adipose tissue, are responsible for the release of most 
IL-6, as well as TNF-a and IL-1b [101]. This cytokine plays 
an important role in regulating the balance between 
interleukin-17 (IL-17), involved in the formation of 
Th17 cells, and regulatory T cells (Treg) [102]. Ryba- 
-Stanisławowska et al. have confirmed the involvement 
of IL-6 in the regulation of the balance between Th17 
and Treg cells in peripheral blood in patients with type 
1 diabetes, which is accompanied by elevated serum 
IL-6 levels [103]. The increase in blood IL-6 coincides 
with the increase in glucose levels in people with type 2  
diabetes. In particular, sudden hyperglycaemia in-
creases the concentration of this cytokine in the blood 
[6]. Because oscillatory hyperglycaemia is more toxic to 
vascular endothelium than continuous hyperglycaemia, 
it is suspected that high levels of IL-6 may be a risk factor 
for the development of atherosclerosis [6]. The effect 
of long-term hyperglycaemia is multiplied by oscilla-
tory glucose levels and amplified by impaired glucose 
tolerance status. Antioxidant, glutathione, protects 
against elevated serum cytokine levels induced by hy-
perglycaemia [6]. This may indicate that hyperglycaemia 
is an important cause of oxidative stress in diabetes.

Pancreatic-derived factor (PANDER)
PANcreatic-DERived factor (PANDER) considered as 

a cytokine is present in the secretory follicles in pancreas 
[104]. In humans, PANDER is involved in apoptosis of 
a- and b-cells [78, 79], depending on concentration. 
It is believed that PANDER expression is influenced by 
insulin resistance and hyperglycaemia [79]. Chronic 
exposure of b-cells to saturated fatty acids such as 
palmitic acid (PA) leads to their apoptosis by activating 
the c-Jun N-terminal kinase (JNK) metabolic pathways 
[104]. Prolonged exposure of pancreatic cells to pal-
mitic acid results in increased expression of PANDER, 
significant increase in phosphorylation of JNK, and 
activation of caspase 3 [104]. Studies by Xiang et al. 
have demonstrated a decrease in expression of PANDER 
[104] following administration of a specific inhibitor of 
JNK kinase (SP600125). Recently, PANDER expression in 
hepatocytes has been demonstrated in humans [79]. 
PANDER binding to liver cell membrane induces insulin 
resistance and increased gluconeogenesis [79]. Inactiva-
tion of hepatic PANDER in mice significantly reduced 
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liver steatosis, insulin resistance and hyperglycaemia 
[79]. The association between secretion of this cytokine 
and the purinergic signalling is unknown.

Summary
In diabetes, metabolic disorders affect not only the 

pancreas, but also other organs such as the liver, skel-
etal muscles and adipose tissue. Key pathophysiological 
disorders are abnormal metabolism and glucose trans-
port associated with inadequate insulin secretion. This 
leads to an increase in blood glucose (hyperglycaemia), 
the formation of free fatty acids and the release of pro-
inflammatory cytokines. In type 2 diabetes, these pro-
cesses involving purines and proinflammatory cytokines 
result in insulin resistance, which is the most important 
factor responsible for the progression of the disease. 
P1 and P2 receptors are present on cells in pancreatic 
islets, the liver and adipose tissue as well as in the car-
diovascular system and pancreatic nerves. In humans, 
the P2X3 receptor present on b-cells is of particular 
importance, because its activation by ATP generates  
a positive autocrine signal, resulting in insulin secretion 
[19, 20]. In response to rapid decrease in blood glucose, 
ATP is released from the granules of b-cells together 
with insulin. Currently, we do not know the effects of 
activation of other P2X receptors in diabetes, especially 
P2Y receptors. Adenosine and P1 (A1 and A2B) recep-
tors, which are present on adipocytes and pancreatic 
islet cells, play a significant role in the pathogenesis 
of diabetes. Adenosine is known to inhibit insulin se-
cretion and stimulate the release of glucagon, which 
proves that a-cells are more sensitive to adenosine than 
b-cells. Experimental studies on animals have shown 
that administration of A1 receptor agonists results in 
normalization of blood glucose, decreased levels of 
free fatty acids and triglycerides, and increased insulin 
sensitivity [40]. By activating the A1 receptor, adeno-
sine inhibits lipolysis in adipocytes and reduces the 
release of free fatty acids. It is therefore expected that 
adenosine or its analogues may in the future be used 
for the treatment of dyslipidaemia and insulin resist-
ance. Unfortunately, most adenosine analogues have 
significant side effects that result from the activation 
of A1 receptors present in the heart and blood vessels, 
the most severe of which are hypotension and brady-
cardia, which limits their use in treatment. Adenosine 
activates A2B receptors by increasing the production 
of IL-6 and other cytokines and thereby contributes to 
increased insulin resistance. A2B adenosine receptors 
are involved in macrophage activation, which affects 
the inflammatory process in adipose tissue and the 
development of insulin resistance. Adenosine affects 
muscle contraction-stimulated and insulin-stimulated 

glucose transport by reducing the amount of glucose 
transporters (GLUT4) on the cell surface, which results 
in lowering the effectiveness of insulin in glucose 
transport into skeletal muscle cells and adipocytes and 
contributes to the development of insulin resistance. 
We believe that compounds that affect the activity of 
enzymes such as adenosine deaminase and adenosine 
kinase as well as A2B receptor antagonists may be effec-
tive therapeutic agents for increasing the sensitivity of 
insulin tissues. The activity of enzymes involved in the 
transformation of nucleotides has been demonstrated 
in cells of the pancreas and also in blood vessels. Among 
NTPDases the most important role is attributed to 
NTPDase3, whose activity has been shown exclusively 
on Langerhans islet cells. This enzyme may affect the 
secretion of insulin by participating in the hydrolysis of 
adenine nucleotides. Experimental studies have shown 
that the ecto-nucleotidase inhibitor ARL 67156 causes 
a marked increase in insulin secretion at low blood 
glucose. We suppose that similar effect can be achieved 
using monoclonal antibodies as a specific inhibitor of 
human NTPDase3. Activity of 5’-nucleotidase has not 
been demonstrated on pancreatic islet cells, only on the 
capillaries of Langerhans islets, and the effect of this 
enzyme on insulin secretion is not known.

In diabetes, the production and release of proin-
flammatory cytokines increases, resulting in increased 
levels of these cytokines both in the blood and in 
pancreatic islets. This leads to imbalance between the 
amount of proinflammatory and protective cytokines. 
Proinflammatory cytokines such as IL-1b, TNF-a and 
IFN-g as well as PANDER are involved in apoptosis 
of pancreatic b-cells. The source of proinflammatory 
cytokines are macrophages migrating to pancreatic 
islet cells and adipocytes of fatty tissue. Interleukin-1b 
is the most potent proapoptotic and proinflammatory 
cytokine. Inside the b-cell, it activates mitogen-activated 
protein kinases (MAPKs), including extracellular signal-
regulated kinase (ERK), and affects the nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kB).
It is supposed that inhibition of NF-kB activity and iNOS 
expression may prove to be an effective way to protect 
pancreatic b-cells from apoptosis induced by IL-1b and 
other cytokines. Compounds such as sulphoraphane, 
radix clematidis extract, guggulsterone and others 
protect b-cells from cytokine-induced apoptosis (IL-
-1b, IFN-g) by inhibiting NF-kB activation and iNOS 
expression. The hope for a new treatment for type 2  
diabetes is the administration of anti-IL-1b antibod-
ies and IL-1 receptor antagonists, which can diminish 
pancreatic inflammatory processes [82]. Presumably, 
inactivation of pancreatic-derived factor in patients 
with diabetes may reduce liver steatosis, insulin re-
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sistance and hyperglycaemia. TNF-a and IFN-g act 
synergistically to induce b-cell apoptosis. Reducing the 
concentration of these cytokines should result in sup-
pression of inflammatory processes, normalization of 
blood glucose and reduced insulin resistance. In type 2  
diabetes and obesity, particularly harmful is long-term 
elevation of IL-6 level, leading to chronic and sustained 
increase in SOCS3 expression. From a therapeutic point 
of view, it is advisable to keep the IL-6 concentration 
below 5 pg/mL [99].
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