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The Interplay between Gut Dysbiosis  
and Diabetic Nephropathy: Implications  
for Treatment and Management

Introduction
The population of microbes (microbiome) in the 

intestine is a symbiotic ecosystem conferring trophic 
and protective function [1]. Gut dysbiosis refers to 
an imbalance in the composition and function of the 
gut microbiota, which can disrupt the gut barrier and 
contribute to systemic inflammation [1]. An altered 
gut microbiome has been implicated in many condi-
tions such as diabetes [2], obesity [3], inflammatory 
[4], autoimmune and neurological conditions. Diabetic 
nephropathy (DN) remains a leading cause of end-
stage renal disease (ESRD) worldwide affecting almost 
a third of patients with diabetes [5]. Although many of 
the causes and consequences of oxidative stress and 
inflammation in DN have been extensively explored, 
little attention had been paid to the intestine and its 
microbial flora as a potential source of these problems.

This editorial reviews the current understanding of 
gut dysbiosis in the context of diabetic nephropathy, 
highlighting the potential mechanisms involved and 
discussing the implications for future research and 
clinical practice. 

Gut dysbiosis and implications for 
nephropathy

The gut-kidney axis refers to the bidirectional rela-
tionship between gut health and renal function. While 
a healthy microbiome is defined by the diversity in bac-
terial species [6], there exists a remarkable commonal-
ity among individuals. Over 50% of healthy individuals 
have the same 75 bacterial species in common and 
bacteria from only 7–9 phyla (from the 55 known bac-
terial phyla) are detected in humans. Over 90% of the 
bacteria identified in the gut microbiome belong to the 
Bacteroidetes and Firmicutes phyla, which include the 
bacteria genera of Bactereoides, Alistipes, Prevotella, 
Porphyromonas, Clostridium, Dorea, Faecalibacterium, 
Eubacterium, Ruminococcus and Lactobacillus [7]. 

Recent studies have revealed a significant link be-
tween gut dysbiosis and diabetic nephropathy. Vaziri 
et al. have shown in different models of chronic kidney 
disease (CKD) in rats a significant disruption of the 
colonic, ileal, jejunal and gastric epithelial tight junc-
tions [8]. Several mechanisms have been proposed to 
explain this connection; and determine what precedes 
the other i.e. is it the gut dysbiosis that triggers the DN 
or vice versa. Regardless, it makes for interesting rumi-
nation; as we continue our search for early markers of 
DN and earlier interventions to prevent the progression 
of the same to ESRD.

The structure of the gastrointestinal barrier con-
sists of the apical membrane of the intestinal epithelial 
cells and the apical junctional complex which seals 
the gap between the adjacent epithelial cells [8]. The 
apical junctional complex consists of the tight junc-
tion which prevents the influx of microorganisms and 
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noxious substances to the sub-mucosal tissue and the 
internal milieu. Gut dysbiosis can lead to increased 
intestinal permeability, allowing endotoxins such as 
lipopolysaccharides (LPS) to enter the bloodstream [9]. 
These endotoxins can trigger systemic inflammation, 
endothelial dysfunction, and fibrosis; which is a key 
factor in the progression of DN [3, 4]. Dysbiosis can 
affect renal function through several pathways, includ-
ing the modulation of gut-derived uremic toxins, such 
as indoxyl sulfate and trimethylamine-N-oxide (TMAO) 
[10]. Additionally, the dysbiosis also leads to reduction 
in normally useful products; such as short-chain fatty 
acids which are essential for the integrity of colono-
cytes and the growth of anti-inflammatory regulatory 
T lymphocytes [4]. The combination of uremic milieu 
and dietary restrictions work in concert to transform 
the gut microbiome from the normal symbiotic to 
a dysbiotic state. 

Renal failure results in profound changes in the 
biochemical milieu of the alimentary tract [11, 12] 
(Fig. 1). First, the rise in urea concentration in the 
body fluids leads to its massive influx into the gas-
trointestinal tract. Within the intestinal tract, urea is 
hydrolyzed by microbial urease leading to formation 
of ammonia [CO(NH2)2 + H2O → CO2 + 2NH3]. Large 
amounts of urea and uric acid released in the intestine 
serve as alternative substrates for the microbial flora 
which normally utilize indigestible complex carbohy-

drates. Third, dietary restrictions, chief among them 
is restricted consumption of fruits and vegetables; 
significantly alter the biochemical milieu of the gas-
trointestinal tract in the CKD population. Since fruits 
and vegetables are the main source of dietary fiber, 
their limited consumption has a deep impact on the 
composition, function and metabolism of the gut 
microbiome. Fourth, use of various phosphate bind-
ing products, i.e. anion-exchange resins, iron-based 
products, calcium acetate, calcium carbonate and 
aluminium hydroxide which are commonly prescribed 
for patients with advanced CKD, must have as yet 
unrecognized effects on the gut microbiome. Finally, 
frequent use of antibiotics to treat vascular access and 
other infections can significantly affect microbiomes 
in patients with advanced CKD.

In the current study of Rabea et al. [13], the inves-
tigators attempt to study the difference in fecal micro-
biota of healthy participants and compare it to that of 
matched individuals with diabetes with and without 
nephropathy. They demonstrated that fecal samples 
from DN patients exhibit an imbalance in the gut mi-
crobiota, with an increase in Erysipelatoclostridium, 
Prevotella_9, and Escherichia shigella and a decrease 
in Roseburia intestinalis. An imbalance in the gut mi-
crobiota was significantly correlated with clinical indi-
cators of renal function, cholesterol, blood albumin, 
and urine albumin creatinine ratio. The findings make 

Figure 1. The Gut–Kidney Axis 
Increased uremic toxins such as uric acid, lead to increased ammonia production, along with reduced fiber intake and 
increased use of phosphate binders (PO4) and antibiotics cause a reduced gut biodiversity and dysbiosis and production of 
short chain fatty acids (SCFA). This along with increased intestinal wall edema and disruption of the tight junctions leads to 
increased endotoxin production such as lipopolysaccharide (LPS) and trimethylamine-N-oxide (TMAO) which in turn cause 
endotoxemia and inflammation worsening the progression of diabetic nephropathy
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Conclusions
We agree with the findings of Rabea et al; that the 

relationship between gut dysbiosis and diabetic ne-
phropathy underscores the importance of considering 
the gut microbiota as a critical factor in the manage-
ment of diabetes-related complications. Understand-
ing “the gut-kidney axis”(fig.1) opens new avenues for 
therapeutic intervention and highlights the need for 
continued research in this evolving field. By integrat-
ing microbiota-based strategies into clinical practice, 
we may improve outcomes for patients with diabetic 
nephropathy and potentially revolutionize the manage-
ment of this challenging condition.

Despite this, more research is needed to better 
understand the specific microbial changes associated 
with DN and to identify biomarkers that can predict 
disease progression. Additionally, large-scale clinical 
trials are required to validate the efficacy of microbiota-
targeted therapies and to establish optimal treatment 
protocols.
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