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ABSTRACT
Objective: The present study aims to identify underly-
ing molecular factors and mechanisms responsible for 
type 2 diabetes (T2D) to unravel its molecular associa-
tion with obesity and diabetic nephropathy (DN) using 
an in silico network systems biology-based integrative 
approach. 
Materials and methods: Microarray datasets for T2D, 
obesity, and DN were retrieved from the Gene Expres-
sion Omnibus (GEO) database through GEO query pack-
age of R programming language followed by the iden-
tification of common differentially expressed genes 
(DEGs) in the 3 diseases. A protein-protein interaction 
(PPI) network was constructed using STRING, and the 
network topology was analyzed using Cytoscape plug-
ins, CytoHubba and CytoCluster, followed by gene set 
enrichment analysis using Enrichr-KG.
Results: The microarray datasets with accession 
numbers GSE20966, GSE9624, and GSE1009 for T2D, 

obesity, and DN, respectively, were pre-processed 
followed by identification of up-regulated and down-
regulated genes. These DEGs resulted in identification 
of 13 common DEGs amongst the diseases. The PPI 
network constructed using STRING contained 93 nodes 
and 866 edges followed by identification of 4 hub 
genes namely AKR1C3, CYP19A1, AKR1D1, and HSD17B3 
using Cytoscape plug-ins, CytoHubba and CytoCluster. 
These 4 hub genes were found to be predominantly 
involved in steroid hormone biosynthesis pathway. 
Conclusions: This study reveals that steroid hormones 
exert a substantial influence on metabolic pathways 
and play a crucial role in the onset and progression of 
metabolic disorder such as T2D and its comorbidites. 
Identification of the molecular factors and mechanisms 
underlying complex diseases can aid in the design of 
therapeutic interventions targeting comorbidities. (Clin 
Diabetol 2024; 13, 5: 282–290)
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Introduction
Type 2 diabetes (T2D) has rapidly emerged as 

a global health issue, driven by factors such as popu-
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lation growth, aging, urbanization, and the rising 
prevalence of obesity and physical inactivity [1]. The 
International Diabetes Federation (IDF) estimated that 
globally in 2021 10.5% of individuals (536.6 million 
people) aged 20–79 years had diabetes, a figure that is 
expected to increase to 12.2% (783.2 million) by 2045. 
Globally more than half a billion individuals live with 
diabetes, accounting for nearly 10.5% of the world 
adult population [2].

Disease comorbidity refers to the coexistence of 
one or more additional diseases or conditions alongside 
a primary or index disease. [3]. Long-term presence 
of T2D increases the risk of developing comorbidities 
such as obesity, hypertension, diabetic nephropathy 
(DN), endothelial dysfunction, end-stage renal disease, 
etc., which can impede antihyperglycemic therapies 
and overall management of T2D [4, 5]. A significant 
proportion of individuals with diabetes are obese (ap-
proximately 90%), while between 20% and 50% of in-
dividuals who have diabetes develop DN [6, 7]. Current 
IDF statistics suggest that every 6 seconds, a person 
dies from diabetes or its complications, with 50% of 
these deaths (totalling 4 million annually) occurring in 
individuals under 60 years old [8].

T2D is a metabolic disorder defined by insulin re-
sistance and dysfunction of pancreatic β-cells, resulting 
in chronic hyperglycemia [9]. Chronic hyperglycemia 
in T2D is linked to damage, dysfunction, and failure 
of various organs, including the retina, kidneys, nerv-
ous system, heart, and blood vessels [10]. Both T2D 
and obesity are linked to insulin resistance [10]. DN is 
among the most common and serious complications of 
T2D and is linked to higher rates of morbidity and mor-
tality in individuals with diabetes [11]. Clinical studies, 
including epidemiological analysis, suggest pathogenic 
links between T2D and obesity as well as between T2D 
and DN. In a study by Ruze et al. (2023) [12], it has 
been reported that obesity, characterized by shared 
genetic and environmental factors in its development, 
exacerbates the influence of genetic susceptibility and 
environmental factors on the pathophysiology of T2D. 
Raman et al. (2010) [13] reported the prevalence of 
metabolic syndrome, characterized by central obesity, 
glucose intolerance, high insulin levels, low HDL cho-
lesterol, elevated triglycerides, and hypertension, and 
its impact on microvascular complications such as dia-
betic nephropathy, diabetic retinopathy, and diabetic 
neuropathy in the Indian population with T2D [13].

Complex diseases arise from a combination of 
factors, often accompanied by genetic perturbations. 
These diseases can be explored using a network systems 
biology approach because network biology has estab-

lished itself as a potent methodology for the analysis 
of complex diseases, focusing on studying networks 
of co-expressed genes and their associated functional 
modules. Network-centric approaches for studying 
complex diseases hold significant promise in identifying 
critical targets that function as both biomarkers and 
therapeutic targets [14, 15]. Numerous transcriptomic 
and genetic studies have been conducted on T2D. CD44 
and CCL5 genes have been shown to be associated with 
wound healing in diabetic patients through analysis 
of transcriptome of dermal lymphatic endothelial cells 
[16]. A genetic study by Ali (2013) [17] reported sev-
eral genes, such as PPARG, IRS1, IRS-2, KCNJ11, WFS1, 
HNF1A, HNF1B, and HNF4A, to be associated with 
T2D that were involved in insulin secretion and action. 
A transcriptomic study by Tonyan et al. (2022) [18] 
identified various differentially expressed genes (DEGs) 
involved in pathways such as lipid metabolism, immune 
response, and the ubiquitin-proteasome system in T2D.

Several studies have demonstrated a direct relation-
ship between T2D and obesity, as well as T2D and DN. 
Bima et al. (2022) [19] identified the ERBB2, FN1, FYN, 
HSPA1A, HBA1, and ITGB1 genes as potential genetic 
markers linking T2D and obesity using a computational 
network biology approach. In another study, the PTPRC, 
CD53, IRF8, IL10RA, and LAPTM5 genes were found to 
play essential roles in the molecular mechanisms of DN, 
a complication of T2D [20].

An epidemiological study to identify diabetic 
nephropathy risk factors in T2D obese people based 
on community T2D patients reported an association 
between the 3 clinical conditions [21]. However, most 
genetic, transcriptomics, and bioinformatics studies 
have focused on the direct association of T2D with 
obesity or T2D with DN, and there are no reports on 
the relationship between T2D, DN, and obesity at the 
molecular level. This leaves a gap in the understanding 
of the molecular underpinning genes and pathways 
common in co-occurrence. The present study was 
therefore undertaken to identify the association at the 
genetic level between T2D, obesity, and DN using an in 
silico network systems biology approach.

Materials and methods
Data retrieval

To investigate the association of T2D with DN and 
obesity, the gene expression profile of 3 different mi-
croarray datasets were retrieved from the NCBI Gene 
Expression Omnibus (GEO) database using the GEO 
query package of R programming language [22]. The 
T2D dataset with accession number GSE20966 [23] was 
on account of GPL1352 [U133_X3P] Affymetrix Human 
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X3P Array platform including beta cells from the pan-
creas of 10 T2D patients and 10 healthy patients. The 
DN microarray dataset GSE1009 [24], comprising 3 dia-
betic nephropathy patients and 3 control subjects, was 
based on the GPL8300 [HG_U95Av2] Affymetrix Human 
Genome U95 Version 2 Array platform and provided 
gene expression profiles of human kidney glomeruli. 
The obesity dataset, GSE9624 [25], was a GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array gene expression profile of adipose tissue from 
5 obese and 6 normal weight patients.

Pre-processing of microarray data and DEG 
identification

The 3 GEO datasets underwent pre-processing 
steps that included data consolidation, normalization 
via log2 transformation, and conversion of probe IDs 
to gene symbols using the gprofiler2 package in RStu-
dio [26]. The data were corrected and normalized, fol-
lowed by the generation of a box plot. Volcano plots 
for all 3 datasets were constructed and visualized us-
ing the ggplot2 package [27]. To identify differential 
gene expression between disease and control states, 
up-regulated genes were obtained with p-value < 0.05 
and logFC > 1, while down-regulated genes were ob-
tained with p-value < 0.05 and logFC < –1, utilizing 
the limma package of R [28].

The 3 datasets of DEGs obtained for T2D, obesity, 
and DN were analysed using InteractiVenn software, 
an online tool that generates Venn diagrams to visual-
ize overlaps and intersections among multiple datasets 
[29], which was used to identify commonly expressed 
DEGs amongst the 3 comorbidites. 

PPI network construction, analysis, and gene 
enrichment

STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) web-based visualization software, was 
used to construct and analyse the protein-protein inter-
action (PPI) network [30], which was further analyzed 
using Cytoscape [31]. Topological analysis and iden-
tification of functional modules of the networks was 
performed using the Cytoscape plug-ins CytoHubba 
[32] and CytoCluster [33].

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was performed using 
Enrichr-KG (Enrichr Knowledge Graph), which returns 
an integrated network of the top enriched terms from 
multiple libraries, connected to their overlapping genes 
[34].

Results
Data retrieval and identification of DEGs

The microarray dataset for T2D, obesity, and 
DN with series identifiers GSE20966, GSE9624, and 
GSE1009, respectively, were retrieved from the NCBI 
GEO database and pre-processed to identify the DEGs. 
Data pre-processing steps involved data consolidation 
and normalization along with selection and filtering 
the sample data using R studio. The volcano plot for 
all the three datasets were generated using ggplot2 
package of R studio (Fig. 1).

To identify the differential gene expression between 
disease and control states, p-value < 0.05 and logFC 
> 1 was used to obtain the up-regulated genes while 
p-value < 0.05 and logFC < –1 was used to obtain 
the down-regulated genes using the limma package. 
In T2D, a total of 668 DEGs were identified in which 
443 were up-regulated and 225 were down-regulated. 
Compared to normal patients, 2671 genes were signifi-
cant DEGs in obese patients with 1249 up-regulated 
genes and 1422 down-regulated genes. In the DN 
patient group, a total of 2471 genes were significant 
DEGs, of which 1643 were up-regulated and 828 were 
down-regulated. A cross-comparison analysis of Inter-
actiVenn identified the common DEGs amongst T2D, 
DN, and obesity, as shown in Figure 2, which resulted 
in the identification of 13 common DEGs.

PPI construction, analysis, and identification of 
hub genes 

The 13 common DEGs shared amongst T2D, DN 
and obesity were imported in STRING database to 
construct PPI network. The network obtained from 
STRING contained 93 nodes (representing genes) and 
866 edges (representing interaction between nodes), 
as shown in Figure 3.

The top 10 hub genes were identified and ranked 
according to their significance, i.e., highly significant 
genes in red, followed by orange, and least significant 
genes in yellow using the CytoHubba (Maximum Clique 
Centrality method) Cytoscape plug-in (Fig. 4A). The 
highly significant hub genes identified were AKR1C3, 
CYP19A1, AKR1D1, HSD17B3, and HSD17B6 followed 
by their validation using the ClusterONE algorithm of 
the Cytoscape plug-in CytoCluster. Four clusters were 
obtained (Tab. 1) out of which 3 clusters with p-value 
< 0.05 were merged (Fig. 5) and further analysed us-
ing CytoHubba to obtain the top 10 hub genes, namely 
AKR1C3, CYP19A1, AKR1D1, HSD17B3, HSD17B8, and 
HSD17B2 (Fig. 4B). 
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After a cross comparison between the highly 
significant genes obtained using Cytoscape plug-ins 
CytoHubba and CytoCluster, 4 hub genes were identi-
fied, i.e., AKR1C3, CYP19A1, AKR1D1, and HSD17B3.

Gene set enrichment analysis
The gene products AKR1D1, HSD17B3, AKR1C3, 

and CYP19A1 were found to be members of the KEGG 
pathway of steroid hormone biosynthesis. AKR1C3 was 
also part of ovarian steroidogenesis, arachidonic acid 
metabolism, and folate biosynthesis, while CYP19A1 
and AKR1D1 were members of ovarian steroidogenesis 
and primary bile acid biosynthesis, respectively (Fig. 6). 

Discussion
In the present study, 4 hub genes were identified 

as underlying molecular factors responsible for T2D, 
obesity, and DN by analyzing DEGs associated with 
these 3 clinical conditions. The hub genes identified 

Figure 1. Volcano Plots of Datasets: (A.) GSE20966 (T2D); (B.) GSE1009 (DN); and (C.) GSE9624 (Obesity) Showing Distribu-
tion of DEGs
Red color indicates up-regulated genes, blue color denotes down-regulated genes, while grey color represents non-significant 
genes; DEGs — differentially expressed genes; DN — diabetic nephropathy; T2D — type 2 diabetes

Figure 2. Identification of 13 Common DEGs amongst T2D 
(purple), Obesity (orange) and DN (green) Using a Venn 
Diagram
DEGs — differentially expressed genes; DN — diabetic 
nephropathy; T2D — type 2 diabetes
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Figure 4. Top 10 Ranked Hub Genes Network Obtained Using the Cytoscape Plug-Ins (A.) CytoHubba and (B.) CytoCluster

A B

Figure 3. Protein-Protein Interaction Network Generated Using STRING with 93 Nodes and 866 Edges when the Highest Confi-
dence Score of 0.900 Was Set as the Minimum Required Interaction Score
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in the study were further investigated using literature 
mining to validate their association with the pathways 
in which the hub genes were enriched. 

AKR1C3 (aldo-keto reductase 1C3) identified in 
the present study has been reported to be responsible 
for producing potent androgens in peripheral tissues 
[35] and plays a crucial role in steroid metabolism by 
converting the precursor androstenedione into tes-
tosterone [36, 37]. Franko et al. (2020) reported that 
hyperglycemia increases the mRNA levels of AKR1C3 

in T2D [38] while Svensson et al. (2008) reported the 
involvement of AKR1C3 with obesity [39].

CYP19A1 (cytochrome P450, family 19, subfam-
ily A, peptide 1) has been reported by Baddela et al. 
(2020) to be involved in activating p-Akt/HIF-1α sign-
aling pathway, which in turn regulates the metabo-
lism of glucose and lipids and is therefore associated 
with T2D [40]. AKR1D1 (aldo-keto reductase 1D1) has 
been reported by Nikolaou et al. (2019) [41] to play 
a crucial role in bile acid synthesis, and its silencing 

Table 1. Clusters Obtained from CytoCluster

Clusters Details Clusters Details

Nodes: 48

Density: 0.510

Quality: 0.795

P-Value: 0.000

Nodes: 19

Density: 0.749

Quality: 0.430

P-Value: 0.010

Nodes: 19

Density: 0.602

Quality: 0.526

P-value: 8.498E-5

Nodes: 3

Density: 0.667

Quality: 0.667

P-Value: 0.079

Figure 5. Merged Network Obtained after Integrating the Three Clusters Obtained from the Cytoscape Plug-In CytoCluster
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enhances insulin sensitivity and leads to lipid accumu-
lation, thereby promoting hepatocyte inflammation. 
HSD17Bs (17β-hydroxysteroid dehydrogenases) com-
prises a group of 15 enzymes, and most members of 
this family, including HSD17B3, are involved in regulat-
ing the biological activity of sex hormones [42]. It was 
reported by Wang et al. (2023) [43] that HSD17B2 and 
HSD17B3 are located in the endoplasmic reticulum and 
are involved in lipid biosynthesis, lipid metabolism, and 
steroid biosynthesis.

Sex steroid hormones significantly influence meta-
bolic pathways, playing a pivotal role in the develop-
ment of metabolic disorders, including T2D. According 
to Zhang et al. (2024) [44], these hormones affect me-
tabolism, adipose tissue distribution, and expansion by 
binding to specific receptors within the adipose tissue 
along with a reduction in estrogen and/or androgens 
commonly associated with central obesity. 

The present study explored the molecular associa-
tion between T2D, obesity, and DN using a network 
systems biology approach. This study identified 4 hub 
genes, namely AKR1C3, CYP19A1, AKR1D1, and 
HSD17B3, predominantly involved in steroid hormone 
biosynthesis pathway, which may contribute to the 
disruption of metabolic pathways, ultimately leading 
to the comorbidities associated with T2D.

Our findings highlighted the common underlying 
genes and pathways amongst these diseases which 
may account for their comorbidity. Although our study 
aimed to map key genes and pathways between T2D, 
obesity, and DN, our results at present are observa-
tional, based on experimental datasets of microarray 
analysis. Therefore, a limitation of our study is that the 
identified genes have not been validated by clinical or 

experimental studies, which could provide valuable 
insights for the development of common therapeutic 
strategies for T2D, obesity, and DN.

Conclusions
This study is the first of its kind to investigate the 

molecular association between T2D, obesity, and DN in 
terms of genes and pathways. Genes common amongst 
the comorbidities, namely AKR1C3, CYP19A1, AKR1D1, 
and HSD17B3, were identified, which were found to 
be involved in the same pathway of steroid hormone 
biosynthesis. Further experimental validation and clini-
cal studies need to be carried out and may become 
a focus of future research.
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