open access

Vol 27, No 3 (2020)
Original articles — Interventional cardiology
Published online: 2018-09-20
Get Citation

Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis

Tomasz Roleder, Magdalena Dobrolinska, Elzbieta Pociask, Wojciech Wanha, Grzegorz Smolka, Wojciech Walkowicz, Radoslaw Parma, Mariusz Lebek, Tomasz Bochenek, Przemysław Pietraszewski, Elvin Kedhi, Andrzej Ochala, Zbigniew Gasior, Ziad A. Ali, Wojciech Wojakowski
DOI: 10.5603/CJ.a2018.0111
·
Pubmed: 30246238
·
Cardiol J 2020;27(3):238-245.

open access

Vol 27, No 3 (2020)
Original articles — Interventional cardiology
Published online: 2018-09-20

Abstract

Background: The composition of plaque impacts the results of stenting. The following study evaluated plaque redistribution related to stent implantation using combined near-infrared spectroscopy and intravascular ultrasound (NIRS-IVUS) imaging.

Methods: The present study included 49 patients (mean age 66 ± 11 years, 75% males) presenting with non-ST elevation myocardial infarction (8%), unstable angina (49%) and stable coronary artery disease (43%). The following parameters were analyzed: mean plaque volume (MPV, mm3), plaque burden (PB, %), remodeling index (RI), and maximal lipid core burden index in a 4 mm segment (maxLCBI4mm). High-lipid burden lesions (HLB) were defined as by maxLCBI4mm > 265 with positive RI. Otherwise plaques were defined as low-lipid burden lesions (LLB). Measurements were done in the target lesion and in 4 mm edges of the stent before and after stent implantation.

Results: MPV and maxLCBI4mm decreased in both HLB (MPV 144.70 [80.47, 274.25] vs. 97.60 [56.82, 223.45]; maxLCBI4mm: 564.11 ± 166.82 vs. 258.11 ± 234.24, p = 0.004) and LLB (MPV: 124.50 [68.00, 186.20] vs. 101.10 [67.87, 165.95]; maxLCBI4mm: 339.07 ± 268.22 vs. 124.60 ± 160.96, p < 0.001), but MPV decrease was greater in HLB (28.00 [22.60, 57.10] vs. 13.50 [1.50, 28.84], p = 0.019). Only at the proximal stent edge of LLB, maxLCBI4mm decreased (34 [0, 207] vs. 0 [0, 45], p = 0.049) and plaque burden increased (45.48 [40.34, 51.55] vs. 51.75 [47.48, 55.76], p = 0.030).

Conclusions: NIRS-IVUS defined HLB characterized more significant decreases in plaque volume by stenting. Plaque redistribution to the proximal edge of the implanted stent occurred only in LLB.

Abstract

Background: The composition of plaque impacts the results of stenting. The following study evaluated plaque redistribution related to stent implantation using combined near-infrared spectroscopy and intravascular ultrasound (NIRS-IVUS) imaging.

Methods: The present study included 49 patients (mean age 66 ± 11 years, 75% males) presenting with non-ST elevation myocardial infarction (8%), unstable angina (49%) and stable coronary artery disease (43%). The following parameters were analyzed: mean plaque volume (MPV, mm3), plaque burden (PB, %), remodeling index (RI), and maximal lipid core burden index in a 4 mm segment (maxLCBI4mm). High-lipid burden lesions (HLB) were defined as by maxLCBI4mm > 265 with positive RI. Otherwise plaques were defined as low-lipid burden lesions (LLB). Measurements were done in the target lesion and in 4 mm edges of the stent before and after stent implantation.

Results: MPV and maxLCBI4mm decreased in both HLB (MPV 144.70 [80.47, 274.25] vs. 97.60 [56.82, 223.45]; maxLCBI4mm: 564.11 ± 166.82 vs. 258.11 ± 234.24, p = 0.004) and LLB (MPV: 124.50 [68.00, 186.20] vs. 101.10 [67.87, 165.95]; maxLCBI4mm: 339.07 ± 268.22 vs. 124.60 ± 160.96, p < 0.001), but MPV decrease was greater in HLB (28.00 [22.60, 57.10] vs. 13.50 [1.50, 28.84], p = 0.019). Only at the proximal stent edge of LLB, maxLCBI4mm decreased (34 [0, 207] vs. 0 [0, 45], p = 0.049) and plaque burden increased (45.48 [40.34, 51.55] vs. 51.75 [47.48, 55.76], p = 0.030).

Conclusions: NIRS-IVUS defined HLB characterized more significant decreases in plaque volume by stenting. Plaque redistribution to the proximal edge of the implanted stent occurred only in LLB.

Get Citation

Keywords

plaque redistribution, stenting, intravascular ultrasound, near-infrared spectroscopy, stent edges

Supplementary Files (4)
FIGURES AND TABLES LEGEND
Download
23KB
Supplementary Online Figure 1
View
146KB
Supplementary Online Figure 2
View
126KB
Supplementary Online Tables
Download
37KB
About this article
Title

Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis

Journal

Cardiology Journal

Issue

Vol 27, No 3 (2020)

Pages

238-245

Published online

2018-09-20

DOI

10.5603/CJ.a2018.0111

Pubmed

30246238

Bibliographic record

Cardiol J 2020;27(3):238-245.

Keywords

plaque redistribution
stenting
intravascular ultrasound
near-infrared spectroscopy
stent edges

Authors

Tomasz Roleder
Magdalena Dobrolinska
Elzbieta Pociask
Wojciech Wanha
Grzegorz Smolka
Wojciech Walkowicz
Radoslaw Parma
Mariusz Lebek
Tomasz Bochenek
Przemysław Pietraszewski
Elvin Kedhi
Andrzej Ochala
Zbigniew Gasior
Ziad A. Ali
Wojciech Wojakowski

References (22)
  1. Prati F, Romagnoli E, Gatto L, et al. Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L'Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome). Circ Cardiovasc Interv. 2016; 9(12).
  2. Soeda T, Uemura S, Park SJ, et al. Incidence and clinical significance of poststent optical coherence tomography findings: one-year follow-up study from a multicenter registry. Circulation. 2015; 132(11): 1020–1029.
  3. Prati F, Romagnoli E, Burzotta F, et al. Clinical Impact of OCT Findings During PCI: The CLI-OPCI II Study. JACC Cardiovasc Imaging. 2015; 8(11): 1297–1305.
  4. Jang IK, Bouma B, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002; 39(4): 604–609.
  5. Yock PG, Linker DT. Intravascular ultrasound. Looking below the surface of vascular disease. Circulation. 1990; 81(5): 1715–1718.
  6. Ali ZA, Roleder T, Narula J, et al. Increased thin-cap neoatheroma and periprocedural myocardial infarction in drug-eluting stent restenosis: multimodality intravascular imaging of drug-eluting and bare-metal stents. Circ Cardiovasc Interv. 2013; 6(5): 507–517.
  7. Ahmed JM, Mintz GS, Weissman NJ, et al. Mechanism of lumen enlargement during intracoronary stent implantation: an intravascular ultrasound study. Circulation. 2000; 102(1): 7–10.
  8. Algowhary M, Matsumura A, Hashimoto Y, et al. Poststenting axial redistribution of atherosclerotic plaque into the reference segments and lumen reduction at the stent edge. Int Heart J. 2006; 47(2): 159–171.
  9. Maehara A, Takagi A, Okura H, et al. Longitudinal plaque redistribution during stent expansion. Am J Cardiol. 2000; 86(10): 1069–1072.
  10. Kini AS, Motoyama S, Vengrenyuk Y, et al. Multimodality Intravascular Imaging to Predict Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2015; 8(7): 937–945.
  11. Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv. 2011; 4(5): 429–437.
  12. Roleder T, Kovacic JC, Ali Z, et al. Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT. EuroIntervention. 2014; 10(3): 303–311.
  13. Noori M, Thayssen P, Veien KT, et al. Lipid-core burden response to stent implantation assessed with near-infrared spectroscopy and intravascular ultrasound evaluation in patients with myocardial infarction. Cardiovasc Revasc Med. 2017; 18(3): 182–189.
  14. Porto I, Di Vito L, Burzotta F, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012; 5(1): 89–96, S1.
  15. Biały D, Wawrzyńska M, Arkowski J, et al. Multimodality imaging of intermediate lesions: Data from fractional flow reserve, optical coherence tomography, near-infrared spectroscopy-intravascular ultrasound. Cardiol J. 2018; 25(2): 196–202.
  16. Wolny R, Dębski A, Kruk M, et al. Slow-flow phenomenon after elective percutaneous coronary intervention of computed tomography-detected vulnerable coronary lesion. Postepy Kardiol Interwencyjnej. 2014; 10(3): 181–184.
  17. Nishio R, Shinke T, Otake H, et al. Stabilizing effect of combined eicosapentaenoic acid and statin therapy on coronary thin-cap fibroatheroma. Atherosclerosis. 2014; 234(1): 114–119.
  18. Chia S, Raffel OC, Takano M, et al. Association of statin therapy with reduced coronary plaque rupture: an optical coherence tomography study. Coron Artery Dis. 2008; 19(4): 237–242.
  19. Zhao JL, Yang YJ, Pei WD, et al. The effect of statins on the no-reflow phenomenon. Am J Cardiovasc Drugs. 2012; 9(2): 81–89.
  20. Stone GW, Maehara A, Muller JE, et al. CANARY Investigators. Plaque Characterization to Inform the Prediction and Prevention of Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention: The CANARY Trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC Cardiovasc Interv. 2015; 8(7): 927–936.
  21. Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008; 1(5): 638–648.
  22. Waxman S, Freilich MI, Suter MJ, et al. A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of drug-eluting stent failure. Circ Cardiovasc Interv. 2010; 3(2): 193–196.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl