open access

Vol 29, No 2 (2022)
Study Protocol
Submitted: 2021-08-07
Accepted: 2021-11-07
Published online: 2022-01-11
Get Citation

The role of superficial wall stress and mechanical factors in scaffold failure: Protocol of the RANSOMED study

Juan Luis Gutiérrez-Chico12, Lili Liu1, Miao Chu3, Ruiyan Zhang1, Milosz J. Jaguszewski4, Giulio Makmur5, Tommaso Gori5, Shengxian Tu3
DOI: 10.5603/CJ.a2022.0001
·
Pubmed: 35146732
·
Cardiol J 2022;29(2):319-323.
Affiliations
  1. Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  2. CardioCare Heart Center, Marbella, Spain
  3. Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
  4. First Cardiology Department, Gdansk University Hospital, Gdansk, Poland
  5. University Medical Center, Mainz, Germany, Mainz

open access

Vol 29, No 2 (2022)
Study protocol — Interventional cardiology
Submitted: 2021-08-07
Accepted: 2021-11-07
Published online: 2022-01-11

Abstract

Not available

Abstract

Not available
Get Citation
About this article
Title

The role of superficial wall stress and mechanical factors in scaffold failure: Protocol of the RANSOMED study

Journal

Cardiology Journal

Issue

Vol 29, No 2 (2022)

Article type

Study Protocol

Pages

319-323

Published online

2022-01-11

Page views

5109

Article views/downloads

567

DOI

10.5603/CJ.a2022.0001

Pubmed

35146732

Bibliographic record

Cardiol J 2022;29(2):319-323.

Authors

Juan Luis Gutiérrez-Chico
Lili Liu
Miao Chu
Ruiyan Zhang
Milosz J. Jaguszewski
Giulio Makmur
Tommaso Gori
Shengxian Tu

References (21)
  1. Wykrzykowska JJ, Onuma Y, Serruys PW. Vascular restoration therapy: the fourth revolution in interventional cardiology and the ultimate "rosy" prophecy. EuroIntervention. 2009; 5 Suppl F: F7–F8.
  2. Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009; 373(9667): 897–910.
  3. Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008; 371(9616): 899–907.
  4. Onuma Y, Serruys PW, Ormiston JA, et al. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2010; 6(4): 447–453.
  5. Dudek D, Onuma Y, Ormiston JA, et al. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2012; 7(9): 1060–1061.
  6. Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013; 6(10): 999–1009.
  7. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015; 10(10): 1144–1153.
  8. Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015; 385(9962): 43–54.
  9. Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016; 388(10059): 2479–2491.
  10. Wykrzykowska J, Kraak R, Hofma S, et al. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI. N Engl J Med. 2017; 376(24): 2319–2328.
  11. Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011; 58(15): 1578–1588.
  12. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016; 67(8): 921–931.
  13. Gutiérrez-Chico JL, Cortés C, Schincariol M, et al. Implantation of bioresorbable scaffolds under guidance of optical coherence tomography: Feasibility and pilot clinical results of a systematic protocol. Cardiol J. 2018; 25(4): 443–458.
  14. Räber L, Brugaletta S, Yamaji K, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and Spectroscopic findings. J Am Coll Cardiol. 2015; 66(17): 1901–1914.
  15. Onuma Y, Serruys PW, Perkins LEL, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation. 2010; 122(22): 2288–2300.
  16. Aoki J, Nakazawa G, Tanabe K, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2007; 69(3): 380–386.
  17. Lee MS, Jurewitz D, Aragon J, et al. Stent fracture associated with drug-eluting stents: clinical characteristics and implications. Catheter Cardiovasc Interv. 2007; 69(3): 387–394.
  18. Kuramitsu S, Hiromasa T, Enomoto S, et al. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circ Cardiovasc Interv. 2012; 5(5): 663–671.
  19. Wu X, von Birgelen C, Muramatsu T, et al. A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention. 2017; 13(9): e1099–e1103.
  20. Wu X, von Birgelen C, Li Z, et al. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Int J Cardiovasc Imaging. 2018; 34(6): 849–861.
  21. Gutiérrez-Chico JL. Superficial wall stress: the long awaited comprehensive biomechanical parameter to objectify and quantify our intuition. Int J Cardiovasc Imaging. 2018; 34(6): 863–865.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl