Vol 27, No 5 (2020)
Editorial comment — COVID-19
Published online: 2020-11-06

open access

Page views 872
Article views/downloads 828
Get Citation

Connect on Social Media

Connect on Social Media

Impaired microcirculation function in COVID-19 and implications for potential therapies

Aleksandra Gąsecka1, Krzysztof J. Filipiak1, Miłosz J. Jaguszewski2
DOI: 10.5603/CJ.2020.0154
Pubmed: 33165898
Cardiol J 2020;27(5):485-488.


Not available

Article available in PDF format

View PDF Download PDF file


  1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727–733.
  2. Rybniker J, Fätkenheuer G. Importance of precise data on SARS-CoV-2 transmission dynamics control. Lancet Infect Dis. 2020; 20(8): 877–879.
  3. Kowalik MM, Trzonkowski P, Łasińska-Kowara M, et al. COVID-19 - Toward a comprehensive understanding of the disease. Cardiol J. 2020; 27(2): 99–114.
  4. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020; 220: 1–13.
  5. Fox SE, Akmatbekov A, Harbert G, et al. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. Lancet Respir Med. 2020; 8(7): 681–686.
  6. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol. 2020; 34(5): e212–e213.
  7. Zhang Y, Cao W, Xiao M, et al. Clinical and coagulation characteristics in 7 patients with critical COVID-2019 pneumonia and acro-ischemia. Zhonghua Xue Ye Xue Za Zhi. 2020; 41(4): 302–307.
  8. Galván Casas C, Català A, Carretero Hernández G, et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 2020; 183(1): 71–77.
  9. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844–847.
  10. Levi M, Thachil J, Iba JH, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6): e438–e440.
  11. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020; 141(20): 1648–1655.
  12. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis, Int. J Infect Dis. 2020.
  13. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–1062.
  14. Lorente-Ros A, Monteagudo Ruiz JM, Rincón LM, et al. Myocardial injury determination improves risk stratification and predicts mortality in COVID-19 patients. Cardiol J. 2020 [Epub ahead of print].
  15. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J Card Fail. 2020; 26(6): 470–475.
  16. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020; 41(19): 1861–1862.
  17. Yang De, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017; 280(1): 41–56.
  18. Varga Z, Flammer A, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–1418.
  19. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637.
  20. Vaduganathan M, Vardeny O, Michel T, et al. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020; 382(17): 1653–1659.
  21. McGonagle D, O’Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020; 2(7): e437–e445.
  22. Zheng YY, Ma YT, Zhang X, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17(5): 259–260.
  23. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41(3): 407–477.
  24. Ferrari R, Camici PG, Crea F, et al. Expert consensus document: A 'diamond' approach to personalized treatment of angina. Nat Rev Cardiol. 2018; 15(2): 120–132.
  25. Klabunde R. Cardiovascular physiology concepts. Lippincott Williams & Wilkins 2011.
  26. Lanza G, Crea F. Primary coronary microvascular dysfunction. Circulation. 2010; 121(21): 2317–2325.
  27. Danchin N, Marzilli M, Parkhomenko A, et al. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis. Cardiology. 2011; 120(2): 59–72.
  28. Bazoukis G, Brilakis ES, Tse G, et al. The efficacy of coronary sinus reducer in patients with refractory angina-A systematic review of the literature. J Interv Cardiol. 2018; 31(6): 775–779.
  29. Banai S, Schwartz M, Sievert H, et al. Long-term follow-up to evaluate the safety of the neovasc reducer a device-based therapy for chronic refractory angina. J Am Coll Cardiol. 2010; 55(10): A98.E927.
  30. Navarese EP, Musci RL, Frediani L, et al. Ion channel inhibition against COVID-19: A novel target for clinical investigation. Cardiol J. 2020 [Epub ahead of print].