open access

Vol 29, No 3 (2022)
Original Article
Submitted: 2020-03-20
Accepted: 2020-06-29
Published online: 2020-07-10
Get Citation

Right ventricular involvement in left ventricular non-compaction cardiomyopathy

Simon F. Stämpfli12, Alexander Gotschy13, Pascal Kiarostami1, Tardu Özkartal1, Christiane Gruner1, Markus Niemann14, Robert Manka15, Felix C. Tanner1
·
Pubmed: 32648250
·
Cardiol J 2022;29(3):454-462.
Affiliations
  1. Department of Cardiology, University Heart Center Zurich, Switzerland
  2. Department of Cardiology, Heart Center Lucerne, Luzerner Kantonsspital, Lucerne, Switzerland
  3. Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
  4. Faculty Mechanical and Medical Engineering, Furtwangen University, Germany
  5. Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland

open access

Vol 29, No 3 (2022)
Original articles — Clinical cardiology
Submitted: 2020-03-20
Accepted: 2020-06-29
Published online: 2020-07-10

Abstract

Background: Left ventricular non-compaction cardiomyopathy (LVNC) features extensive trabeculations. Involvement of the right ventricle (RV) has been reported; however, distinction from normal RV trabeculation is difficult. This study aimed at assessing RV morphology and function in LVNC by cardiac magnetic resonance (CMR) and transthoracic echocardiography (TTE).
Methods: Dimensional and functional parameters were assessed according to guidelines. Novel CMR parameters were RV end-diastolic (ED) trabeculated area, RV ED trabeculated volume, and RV ED non-compacted to compacted (NC/N) ratio in short axis (SAX) as well as in four-chamber view (4CH).
Results: Twenty patients with LVNC and 20 controls were included. RV size and function were comparable in LVNC and controls and exhibited a good correlation between TTE and CMR. Although RV trabeculated area, RV trabeculated volume, and RV ED NC/C ratio in SAX as well as in 4CH were larger in LVNC, there was a major overlap with values in controls. RV ED NC/C ratio in SAX correlated with LV ED NC/C ratio (not in 4CH). Quantitative assessment of RV non-compaction was not feasible in TTE.
Conclusions: Right ventricle size and function in LVNC can be measured by CMR and TTE, while RV trabeculation can only be quantified by CMR. RV myocardium displays more trabeculations in LVNC; however, overlap with normal individuals is extensive, not allowing separation of patients with LVNC from controls.

Abstract

Background: Left ventricular non-compaction cardiomyopathy (LVNC) features extensive trabeculations. Involvement of the right ventricle (RV) has been reported; however, distinction from normal RV trabeculation is difficult. This study aimed at assessing RV morphology and function in LVNC by cardiac magnetic resonance (CMR) and transthoracic echocardiography (TTE).
Methods: Dimensional and functional parameters were assessed according to guidelines. Novel CMR parameters were RV end-diastolic (ED) trabeculated area, RV ED trabeculated volume, and RV ED non-compacted to compacted (NC/N) ratio in short axis (SAX) as well as in four-chamber view (4CH).
Results: Twenty patients with LVNC and 20 controls were included. RV size and function were comparable in LVNC and controls and exhibited a good correlation between TTE and CMR. Although RV trabeculated area, RV trabeculated volume, and RV ED NC/C ratio in SAX as well as in 4CH were larger in LVNC, there was a major overlap with values in controls. RV ED NC/C ratio in SAX correlated with LV ED NC/C ratio (not in 4CH). Quantitative assessment of RV non-compaction was not feasible in TTE.
Conclusions: Right ventricle size and function in LVNC can be measured by CMR and TTE, while RV trabeculation can only be quantified by CMR. RV myocardium displays more trabeculations in LVNC; however, overlap with normal individuals is extensive, not allowing separation of patients with LVNC from controls.

Get Citation

Keywords

trabeculation, cardiac magnetic resonance imaging, echocardiography, left ventricular non-compaction cardiomyopathy

About this article
Title

Right ventricular involvement in left ventricular non-compaction cardiomyopathy

Journal

Cardiology Journal

Issue

Vol 29, No 3 (2022)

Article type

Original Article

Pages

454-462

Published online

2020-07-10

Page views

6018

Article views/downloads

1015

DOI

10.5603/CJ.a2020.0095

Pubmed

32648250

Bibliographic record

Cardiol J 2022;29(3):454-462.

Keywords

trabeculation
cardiac magnetic resonance imaging
echocardiography
left ventricular non-compaction cardiomyopathy

Authors

Simon F. Stämpfli
Alexander Gotschy
Pascal Kiarostami
Tardu Özkartal
Christiane Gruner
Markus Niemann
Robert Manka
Felix C. Tanner

References (34)
  1. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113(14): 1807–1816.
  2. Finsterer J, Stöllberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017; 14(4): 224–237.
  3. Stöllberger C, Finsterer J. Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr. 2004; 17(1): 91–100.
  4. Engberding R, Bender F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography: persistence of isolated myocardial sinusoids. Am J Cardiol. 1984; 53(11): 1733–1734.
  5. Jenni R, Goebel N, Tartini R, et al. Persisting myocardial sinusoids of both ventricles as an isolated anomaly: echocardiographic, angiographic, and pathologic anatomical findings. Cardiovasc Intervent Radiol. 1986; 9(3): 127–131.
  6. Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J. 2011; 32(12): 1446–1456.
  7. Oechslin EN, Attenhofer Jost CH, Rojas JR, et al. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000; 36(2): 493–500.
  8. Stämpfli SF, Erhart L, Hagenbuch N, et al. Prognostic power of NT-proBNP in left ventricular non-compaction cardiomyopathy. Int J Cardiol. 2017; 236: 321–327.
  9. Chin TK, Perloff JK, Williams RG, et al. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990; 82(2): 507–513.
  10. Murphy RT, Thaman R, Blanes JG, et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J. 2005; 26(2): 187–192.
  11. Lofiego C, Biagini E, Pasquale F, et al. Wide spectrum of presentation and variable outcomes of isolated left ventricular non-compaction. Heart. 2007; 93(1): 65–71.
  12. Aras D, Tufekcioglu O, Ergun K, et al. Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail. 2006; 12(9): 726–733.
  13. Lilje C, Rázek V, Joyce JJ, et al. Complications of non-compaction of the left ventricular myocardium in a paediatric population: a prospective study. Eur Heart J. 2006; 27(15): 1855–1860.
  14. Ivanov A, Dabiesingh DS, Bhumireddy GP, et al. Prevalence and Prognostic Significance of Left Ventricular Noncompaction in Patients Referred for Cardiac Magnetic Resonance Imaging. Circ Cardiovasc Imaging. 2017; 10(9).
  15. Ritter M, Oechslin E, Sütsch G, et al. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc. 1997; 72(1): 26–31.
  16. Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997; 72(3): 257–265.
  17. Gebhard C, Stähli BE, Greutmann M, et al. Reduced left ventricular compacta thickness: a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr. 2012; 25(10): 1050–1057.
  18. Chiribiri A, Leuzzi S, Salvetti I, et al. Isolated noncompaction of the right ventricular myocardium in the adulthood? Int J Cardiol. 2009; 134(1): e17–e19.
  19. Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999; 34(1): 233–240.
  20. Leung SW, Elayi CS, Charnigo RJ, et al. Clinical significance of right ventricular dysfunction in left ventricular non-compaction cardiomyopathy. Int J Cardiovasc Imaging. 2012; 28(5): 1123–1131.
  21. Nucifora G, Aquaro GD, Masci PG, et al. Magnetic resonance assessment of prevalence and correlates of right ventricular abnormalities in isolated left ventricular noncompaction. Am J Cardiol. 2014; 113(1): 142–146.
  22. Stacey RB, Andersen M, Haag J, et al. Right ventricular morphology and systolic function in left ventricular noncompaction cardiomyopathy. Am J Cardiol. 2014; 113(6): 1018–1023.
  23. Stämpfli SF, Donati TG, Hellermann J, et al. Right ventricle and outcome in left ventricular non-compaction cardiomyopathy. J Cardiol. 2020; 75(1): 20–26.
  24. Bleeker GB, Steendijk P, Holman ER, et al. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006; 92 Suppl 1: i19–i26.
  25. Alhabshan F, Smallhorn JF, Golding F, et al. Extent of myocardial non-compaction: comparison between MRI and echocardiographic evaluation. Pediatr Radiol. 2005; 35(11): 1147–1151.
  26. Thuny F, Jacquier A, Jop B, et al. Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis. 2010; 103(3): 150–159.
  27. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005; 46(1): 101–105.
  28. Jacquier A, Thuny F, Jop B, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010; 31(9): 1098–1104.
  29. Kramer CM, Barkhausen J, Flamm SD, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson. 2008; 10: 35.
  30. Kramer CM, Barkhausen J, Flamm SD, et al. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013; 15: 91.
  31. Rudski L, Lai W, Afilalo J, et al. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010; 23(7): 685–713.
  32. Lang R, Badano L, Mor-Avi V, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3): 233–271.
  33. Maceira AM, Prasad SK, Khan M, et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006; 27(23): 2879–2888.
  34. Le Ven F, Bibeau K, De Larochellière É, et al. Cardiac morphology and function reference values derived from a large subset of healthy young Caucasian adults by magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2016; 17(9): 981–990.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl