open access

Ahead of print
Original Article
Published online: 2019-10-21
Get Citation

The non-invasive evaluation of heart function in patients with an acute myocardial infarction: The role of impedance cardiography

Lukasz Lewicki, Marta Fijalkowska, Maciej Karwowski, Konrad Siebert, Grzegorz Redlarski, Aleksander Palkowski, Radoslaw Targonski, Janusz Siebert
DOI: 10.5603/CJ.a2019.0098
·
Pubmed: 31642052

open access

Ahead of print
Original articles
Published online: 2019-10-21

Abstract

Background: The purpose of this study was to analyze hemodynamic changes in patients treated with percutaneous coronary intervention (PCI) at an early stage of acute myocardial infarction (AMI) and at one-month follow-up.

Methods: Patients with AMI (n = 27) who underwent PCI were analyzed using impedance cardiography (ICG). ICG data were collected continuously (beat by beat) during the whole PCI procedure and thereafter at every 60 s  for the next 24 h. Blood pressure was taken every 10 min and stored for analysis. Additionally the following parameters were measured: cardiac index (CI), stroke volume index (SVi), left cardiac work index (LCWi), contractility index (CTi), ventricular ejection time (VET), systemic vascular resistance index (SVRi), thoracic fluid content index (TFCi) and heart rate (HR).

Results: In the first 24 h after PCI all the contractility parameters including CI, SVi, LCWi, CTi and VET significantly decreased, whereas HR, SVRi and TFCi increased compared to baseline. All of the parameters examined got normalized at one month. The CI, SVi, LCWi, CTi, SVRi did not significantly differ from baseline, however the HR and VET were significantly lower compared to first day after PCI.

Conclusions: 1. Cardiac performance deteriorates early after PCI and normalizes after one month in patients with an AMI. 2. ICG is useful for hemodynamic monitoring of AMI patients during and after invasive therapy.

Abstract

Background: The purpose of this study was to analyze hemodynamic changes in patients treated with percutaneous coronary intervention (PCI) at an early stage of acute myocardial infarction (AMI) and at one-month follow-up.

Methods: Patients with AMI (n = 27) who underwent PCI were analyzed using impedance cardiography (ICG). ICG data were collected continuously (beat by beat) during the whole PCI procedure and thereafter at every 60 s  for the next 24 h. Blood pressure was taken every 10 min and stored for analysis. Additionally the following parameters were measured: cardiac index (CI), stroke volume index (SVi), left cardiac work index (LCWi), contractility index (CTi), ventricular ejection time (VET), systemic vascular resistance index (SVRi), thoracic fluid content index (TFCi) and heart rate (HR).

Results: In the first 24 h after PCI all the contractility parameters including CI, SVi, LCWi, CTi and VET significantly decreased, whereas HR, SVRi and TFCi increased compared to baseline. All of the parameters examined got normalized at one month. The CI, SVi, LCWi, CTi, SVRi did not significantly differ from baseline, however the HR and VET were significantly lower compared to first day after PCI.

Conclusions: 1. Cardiac performance deteriorates early after PCI and normalizes after one month in patients with an AMI. 2. ICG is useful for hemodynamic monitoring of AMI patients during and after invasive therapy.

Get Citation

Keywords

impedance cardiography, acute myocardial infarction, hemodynamics, percutaneous coronary intervention

About this article
Title

The non-invasive evaluation of heart function in patients with an acute myocardial infarction: The role of impedance cardiography

Journal

Cardiology Journal

Issue

Ahead of print

Article type

Original Article

Published online

2019-10-21

DOI

10.5603/CJ.a2019.0098

Pubmed

31642052

Keywords

impedance cardiography
acute myocardial infarction
hemodynamics
percutaneous coronary intervention

Authors

Lukasz Lewicki
Marta Fijalkowska
Maciej Karwowski
Konrad Siebert
Grzegorz Redlarski
Aleksander Palkowski
Radoslaw Targonski
Janusz Siebert

References (24)
  1. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013; 123(1): 92–100.
  2. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985; 76(5): 1713–1719.
  3. Piper HM, García-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998; 38(2): 291–300.
  4. Yellon D, Hausenloy D. Myocardial reperfusion injury. New Engl J Med. 2007; 357(11): 1121–1135.
  5. Kloner RA, Bolli R, Marban E, et al. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998; 97(18): 1848–1867.
  6. Krug A, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res. 1966; 19(1): 57–62.
  7. Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nature Clin Pract Cardiovasc Med. 2006; 3(9): 499–506.
  8. Luo AK, Wu KC. Imaging microvascular obstruction and its clinical significance following acute myocardial infarction. Heart Fail Rev. 2006; 11(4): 305–312.
  9. Hearse DJ, Tosaki A. Free radicals and reperfusion-induced arrhythmias: protection by spin trap agent PBN in the rat heart. Circ Res. 1987; 60(3): 375–383.
  10. Niu X, Zhang Q, Xiao D, et al. A retrospective study of hemodynamic changes in patients after off-pump coronary artery bypass graft surgery using impedance cardiography. Med Sci Monit. 2019; 25: 3454–3462.
  11. Louvaris Z, Spetsioti S, Andrianopoulos V, et al. Cardiac output measurement during exercise in COPD: A comparison of dye dilution and impedance cardiography. Clin Respir J. 2019; 13(4): 222–231.
  12. Małek ŁA, Mróz A, Czajkowska A, et al. Accuracy of impedance cardiography for hemodynamic assessment during rest and exercise in wheelchair rugby players. Res Q Exerc Sport. 2019; 90(3): 336–343.
  13. Kurpaska M, Krzesiński P, Gielerak G, et al. Exercise impedance cardiography reveals impaired hemodynamic responses to exercise in hypertensives with dyspnea. Hypertens Res. 2019; 42(2): 211–222.
  14. Woltjer HH, Bogaard HJ, Vries Pde. The technique of impedance cardiography. Eur Heart J. 1997; 18(9): 1396–1403.
  15. Silver MA, Cianci P, Brennan S, et al. Evaluation of impedance cardiography as an alternative to pulmonary artery catheterization in critically ill patients. Congest Heart Fail. 2004; 10(2 Suppl 2): 17–21.
  16. Sadauskas S, Naudžiūnas A, Unikauskas A, et al. Applicability of Impedance Cardiography During Heart Failure Flare-Ups. Med Sci Monit. 2016; 22: 3614–3622.
  17. B-Type natriuretic peptide and impedance cardiography testing at the time of routine echocardiography predict subsequent heart failure events. J Card Fail. 2005; 11(6): S123.
  18. Bhalla V, Isakson S, Bhalla MA, et al. Diagnostic ability of B-type natriuretic peptide and impedance cardiography: testing to identify left ventricular dysfunction in hypertensive patients. Am J Hypertens. 2005; 18(2 Pt 2): 73S–81S.
  19. Castellanos LR, Bhalla V, Isakson S, et al. B-type natriuretic peptide and impedance cardiography at the time of routine echocardiography predict subsequent heart failure events. J Card Fail. 2009; 15(1): 41–47.
  20. Ablonskytė-Dūdonienė R, Bakšytė G, Ceponienė I, et al. Prognosis of in-hospital myocardial infarction course for diabetic and nondiabetic patients using a noninvasive evaluation of hemodynamics and heart rate variability. Medicina (Kaunas). 2013; 49(6): 262–272.
  21. Brazdzionyte J, Macas A. Impedance cardiography for aortic balloon counterpulsation impact assessment on patients hemodynamics during acute myocardial infarction. Medicina (Kaunas). 2006; 42(11): 904–913.
  22. Neri M, Riezzo I, Pascale N, et al. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediators Inflamm. 2017; 2017: 7018393.
  23. Chen SJ, Gong Z, Duan QL. Evaluation of heart function with impedance cardiography in acute myocardial infarction patients. Int J Clin Exp Med. 2014; 7(3): 719–727.
  24. Malfatto G, Blengino S, Perego GB, et al. Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure. Congest Heart Fail. 2012; 18(1): 25–31.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl