open access

Vol 25, No 1 (2018)
Original articles — Interventional cardiology
Submitted: 2017-06-08
Accepted: 2017-10-06
Published online: 2017-10-18
Get Citation

In-stent restenosis-prone coronary plaque composition: A retrospective virtual histology-intravascular ultrasound study

Duck-Jun Seo1, Yong-Kyun Kim1, Young-Hoon Seo1, In-Geol Song1, Ki-Hong Kim1, Taek-Geun Kwon1, Hyun-Woong Park2, Jang-Ho Bae1
DOI: 10.5603/CJ.a2017.0124
·
Pubmed: 29064537
·
Cardiol J 2018;25(1):7-13.
Affiliations
  1. Konyang University Hospital
  2. Gyeongsang National University Hospital

open access

Vol 25, No 1 (2018)
Original articles — Interventional cardiology
Submitted: 2017-06-08
Accepted: 2017-10-06
Published online: 2017-10-18

Abstract

Background: The mechanism of in-stent restenosis (ISR) is multifactorial, which includes biological, mechanical and technical factors. This study hypothesized that increased inflammatory reaction, which is known to be an important atherosclerotic process, at a culprit lesion may lead to higher restenosis rates.

Methods: The study population consisted of 241 patients who had undergone percutaneous coronary intervention with virtual histology-intravascular ultrasound (VH-IVUS) and a 9-month follow-up coronary angiography. Compared herein is the coronary plaque composition between patients with ISR and those without ISR.

Results: Patients with ISR (n = 27) were likely to be older (66.2 ± 9.5 years vs. 58.7 ± 11.7 years, p = 0.002) and have higher levels of high-sensitivity C-reactive protein (hs-CRP, 1.60 ± 3.59 mg/dL vs. 0.31 ± 0.76 mg/dL, p < 0.001) than those without ISR (n = 214). VH-IVUS examination showed that percent necrotic core volume (14.3 ± 8.7% vs. 19.5 ± 9.1%, p = 0.005) was higher in those without ISR than those with ISR. Multivariate analysis revealed that hs-CRP (odds ratio [OR] 3.334, 95% con­fidence interval [CI] 1.158–9.596, p = 0.026) and age (OR 3.557, 95% CI 1.242–10.192, p = 0.018) were associated with ISR.

Conclusions: This study suggests that ISR is not associated with baseline coronary plaque composition but is associated with old age and increased expression of the inflammatory marker of hs-CRP. (Cardiol J 2018; 25, 1: 7–13)

Abstract

Background: The mechanism of in-stent restenosis (ISR) is multifactorial, which includes biological, mechanical and technical factors. This study hypothesized that increased inflammatory reaction, which is known to be an important atherosclerotic process, at a culprit lesion may lead to higher restenosis rates.

Methods: The study population consisted of 241 patients who had undergone percutaneous coronary intervention with virtual histology-intravascular ultrasound (VH-IVUS) and a 9-month follow-up coronary angiography. Compared herein is the coronary plaque composition between patients with ISR and those without ISR.

Results: Patients with ISR (n = 27) were likely to be older (66.2 ± 9.5 years vs. 58.7 ± 11.7 years, p = 0.002) and have higher levels of high-sensitivity C-reactive protein (hs-CRP, 1.60 ± 3.59 mg/dL vs. 0.31 ± 0.76 mg/dL, p < 0.001) than those without ISR (n = 214). VH-IVUS examination showed that percent necrotic core volume (14.3 ± 8.7% vs. 19.5 ± 9.1%, p = 0.005) was higher in those without ISR than those with ISR. Multivariate analysis revealed that hs-CRP (odds ratio [OR] 3.334, 95% con­fidence interval [CI] 1.158–9.596, p = 0.026) and age (OR 3.557, 95% CI 1.242–10.192, p = 0.018) were associated with ISR.

Conclusions: This study suggests that ISR is not associated with baseline coronary plaque composition but is associated with old age and increased expression of the inflammatory marker of hs-CRP. (Cardiol J 2018; 25, 1: 7–13)

Get Citation

Keywords

intravascular ultrasonography, coronary artery disease, myocardial ischemia, inflammation, coronary stenosis

About this article
Title

In-stent restenosis-prone coronary plaque composition: A retrospective virtual histology-intravascular ultrasound study

Journal

Cardiology Journal

Issue

Vol 25, No 1 (2018)

Pages

7-13

Published online

2017-10-18

Page views

2893

Article views/downloads

1549

DOI

10.5603/CJ.a2017.0124

Pubmed

29064537

Bibliographic record

Cardiol J 2018;25(1):7-13.

Keywords

intravascular ultrasonography
coronary artery disease
myocardial ischemia
inflammation
coronary stenosis

Authors

Duck-Jun Seo
Yong-Kyun Kim
Young-Hoon Seo
In-Geol Song
Ki-Hong Kim
Taek-Geun Kwon
Hyun-Woong Park
Jang-Ho Bae

References (20)
  1. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003; 349(14): 1315–1323.
  2. Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet. 2007; 370(9591): 937–948.
  3. Sabaté M, Jiménez-Quevedo P, Angiolillo DJ, et al. DIABETES Investigators. Randomized comparison of sirolimus-eluting stent versus standard stent for percutaneous coronary revascularization in diabetic patients: the diabetes and sirolimus-eluting stent (DIABETES) trial. Circulation. 2005; 112(14): 2175–2183.
  4. Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005; 294(10): 1215–1223.
  5. Cosgrave J, Agostoni P, Ge L, et al. Clinical outcome following aleatory implantation of paclitaxel-eluting or sirolimus-eluting stents in complex coronary lesions. Am J Cardiol. 2005; 96(12): 1663–1668.
  6. Dangas GD, Claessen BE, Caixeta A, et al. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010; 56(23): 1897–1907.
  7. Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation. 2005; 111(17): 2257–2273.
  8. Rogers C, Welt FG, Karnovsky MJ, et al. Monocyte recruitment and neointimal hyperplasia in rabbits. Coupled inhibitory effects of heparin. Arterioscler Thromb Vasc Biol. 1996; 16(10): 1312–1318.
  9. Teirstein PS, Massullo V, Jani S, et al. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med. 1997; 336(24): 1697–1703.
  10. Stone GW, Kandzari DE, Mehran R, et al. Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I. Circulation. 2005; 112(15): 2364–2372.
  11. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001; 37(5): 1478–1492.
  12. Lee CS, Seo YH, Yang DJu, et al. Positive Vascular Remodeling in Culprit Coronary Lesion is Associated With Plaque Composition: An Intravascular Ultrasound-Virtual Histology Study. Korean Circ J. 2012; 42(11): 747–752.
  13. Sakakura K, Nakano M, Otsuka F, et al. Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. Eur Heart J. 2014; 35(25): 1683–1693.
  14. Karas SP, Gravanis MB, Santoian EC, et al. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol. 1992; 20(2): 467–474.
  15. Toutouzas K, Colombo A, Stefanadis C. Inflammation and restenosis after percutaneous coronary interventions. Eur Heart J. 2004; 25(19): 1679–1687.
  16. Meuwissen M, Piek JJ, van der Wal AC, et al. Recurrent unstable angina after directional coronary atherectomy is related to the extent of initial coronary plaque inflammation. J Am Coll Cardiol. 2001; 37(5): 1271–1276.
  17. Libby P. Inflammation in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012; 32(9): 2045–2051.
  18. De Gregorio J, Kobayashi Y, Albiero R, et al. Coronary artery stenting in the elderly: short-term outcome and long-term angiographic and clinical follow-up. J Am Coll Cardiol. 1998; 32(3): 577–583.
  19. Liuzzo G, Buffon A, Biasucci LM, et al. Enhanced inflammatory response to coronary angioplasty in patients with severe unstable angina. Circulation. 1998; 98(22): 2370–2376.
  20. Lasave LI, Abizaid AAC, Paiva e Maia J, et al. [Relationship between plasma C-reactive protein level and neointimal hyperplasia volume in patients with zotarolimus-eluting stents. Volumetric analysis by three-dimensional intracoronary ultrasound]. Rev Esp Cardiol. 2007; 60(9): 923–931.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl