Vol 24, No 2 (2017)
Editorial - Clinical cardiology
Published online: 2017-04-13

open access

Page views 1919
Article views/downloads 2073
Get Citation

Connect on Social Media

Connect on Social Media

Intensive exercise and its effect on the heart: Is more always better?

Anna M. Kaleta, Ewa Lewicka, Alicja Dąbrowska-Kugacka, Zuzanna Lewicka-Potocka, Elżbieta Wabich, Wojciech Potocki, Grzegorz Raczak
Pubmed: 28421587
Cardiol J 2017;24(2):111-116.

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006; 174(6): 801–809.
  2. Nocon M, Hiemann T, Müller-Riemenschneider F, et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008; 15(3): 239–246.
  3. http://runrepeat.com/research-marathon-performance-across-nations
  4. http://www.statisticbrain.com/marathon-running-statistics/
  5. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace. 2009; 11(9): 1156–1159.
  6. Mont L, Sambola A, Brugada J, et al. Long-lasting sport practice and lone atrial fibrillation. Eur Heart J. 2002; 23(6): 477–482.
  7. Corrado D, Basso C, Rizzoli G, et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003; 42(11): 1959–1963.
  8. Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006; 114(22): 2325–2333.
  9. La Gerche A, Connelly KA, Mooney DJ, et al. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart. 2008; 94(7): 860–866.
  10. La Gerche A, Heidbüchel H, Burns AT, et al. Disproportionate exercise load and remodeling of the athlete's right ventricle. Med Sci Sports Exerc. 2011; 43(6): 974–981.
  11. La Gerche A, Inder WJ, Roberts TJ, et al. Relationship between Inflammatory Cytokines and Indices of Cardiac Dysfunction following Intense Endurance Exercise. PLoS One. 2015; 10(6): e0130031.
  12. Benito B, Gay-Jordi G, Serrano-Mollar A, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011; 123(1): 13–22.
  13. Ector J, Ganame J, van der Merwe N, et al. Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhythmias: a quantitative angiographic assessment. Eur Heart J. 2007; 28(3): 345–353.
  14. Heidbuchel H, Prior DL, La Gerche A. Ventricular arrhythmias associated with long-term endurance sports: what is the evidence? Br J Sports Med. 2012; 46 Suppl 1: i44–i50.
  15. McCarthy DA, Grant M, Marbut M, et al. Brief exercise induces an immediate and a delayed leucocytosis. Br J Sports Med. 1991; 25(4): 191–195.
  16. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990; 323(4): 236–241.
  17. Dutka DP, Elborn JS, Delamere F, et al. Tumour necrosis factor alpha in severe congestive cardiac failure. Br Heart J. 1993; 70(2): 141–143.
  18. Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation. 2003; 108(19): 2317–2322.
  19. La Gerche A, Inder WJ, Roberts TJ, et al. Relationship between Inflammatory Cytokines and Indices of Cardiac Dysfunction following Intense Endurance Exercise. PLoS One. 2015; 10(6): e0130031.
  20. Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007; 115(11): 1398–1407.
  21. Gresslien T, Agewall S. Troponin and exercise. Int J Cardiol. 2016; 221: 609–621.
  22. Wiedermann CJ, Beimpold H, Herold M, et al. Increased levels of serum neopterin and decreased production of neutrophil superoxide anions in chronic heart failure with elevated levels of tumor necrosis factor-alpha. J Am Coll Cardiol. 1993; 22(7): 1897–1901.
  23. Sprenger H, Jacobs C, Nain M, et al. Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clin Immunol Immunopathol. 1992; 63(2): 188–195.
  24. Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PLoS One. 2015; 10(11): e0141780.
  25. Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun. 2015; 6: 6018.
  26. Lewicka E, Dudzinska-Gehrmann J, Dabrowska-Kugacka A, et al. Neopterin and interleukin-6 as predictors of recurrent atrial fibrillation. Anatol J Cardiol. 2016; 16(8): 563–571.
  27. Martinez de la Torre Y, Fabbri M, Jaillon S, et al. Evolution of the pentraxin family: the new entry PTX4. J Immunol. 2010; 184(9): 5055–5064.
  28. Mantovani A, Garlanda C, Bottazzi B, et al. The long pentraxin PTX3 in vascular pathology. Vascul Pharmacol. 2006; 45(5): 326–330.
  29. Soeki T, Bando S, Uematsu E, et al. Pentraxin 3 is a local inflammatory marker in atrial fibrillation. Heart Vessels. 2014; 29(5): 653–658.
  30. Nakajima T, Kurano M, Hasegawa T, et al. Pentraxin3 and high-sensitive C-reactive protein are independent inflammatory markers released during high-intensity exercise. Eur J Appl Physiol. 2010; 110(5): 905–913.
  31. Leary PJ, Jenny NS, Barr RG, et al. Pentraxin-3 and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-Right Ventricle Study. Pulm Circ. 2014; 4(2): 250–259.
  32. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004; 110(19): 3121–3128.
  33. Fenster BE, Lasalvia L, Schroeder JD, et al. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessels. 2016; 31(6): 939–946.
  34. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007; 117(6): 1538–1549.
  35. Pascual-Figal DA, Lax A, Perez-Martinez MT, et al. GREAT Network. Clinical relevance of sST2 in cardiac diseases. Clin Chem Lab Med. 2016; 54(1): 29–35.
  36. Miller WL, Saenger AK, Grill DE, et al. Prognostic Value of Serial Measurements of Soluble Suppression of Tumorigenicity 2 and Galectin-3 in Ambulatory Patients With Chronic Heart Failure. J Card Fail. 2016; 22(4): 249–255.
  37. Agoston-Coldea L, Lupu S, Hicea S, et al. Serum levels of the soluble IL-1 receptor family member ST2 and right ventricular dysfunction. Biomark Med. 2014; 8(1): 95–106.
  38. Woźnicka A, Brzostowicz M, Karolko B, et al. Znaczenie białka ST2 w schorzeniach układu krążenia. Folia Cardiologica. 2016; 11(4): 303–309.
  39. Kilcullen N, Viswanathan K, Das R, et al. EMMACE-2 Investigators. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values. J Am Coll Cardiol. 2007; 50(21): 2061–2067.
  40. O'Donoghue M, de Lemos JA, Morrow DA, et al. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation. 2006; 114(6): 550–557.
  41. Dellas C, Puls M, Lankeit M, et al. Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. J Am Coll Cardiol. 2010; 55(19): 2150–2157.
  42. Lankeit M, Dellas C, Panzenböck A, et al. Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2008; 31(5): 1024–1029.