The value of left atrial strain and strain rate in predicting left atrial appendage stasis in patients with nonvalvular atrial fibrillation
Abstract
Background: This study aimed to investigate the value of left atrial (LA) strain and strain rate (S/SR) by transthoracic echocardiography (TTE) in predicting left atrial appendage (LAA) stasis, in order to find a way for LAA stasis screening which is easily performed in patients with nonvalvular atrial fibrillation (NVAF).
Methods: One hundred and thirty NVAF patients prepared for AF ablation were enrolled. TTE and transesophageal echocardiography (TEE) were performed in all patients. LA S/SR in each phase was analyzed off-line. LAA blood flow state and LAA function were assessed by using TEE.
Results: LA S/SRs during atrial reservoir phase (LA Sres/SRres) were significantly negatively correlated with LAA spontaneous echo contrast (SEC) grade (r = −0.567 and −0.520, respectively; all p < 0.01), and positively correlated with LAA emptying fraction (r = 0.602 and 0.619, respectively; all p < 0.01) and with LAA peak emptying flow velocity (r = 0.623 and 0.642, respectively; all p < 0.01). The multivariate logistic regression analysis showed LA Sres to be the strongest independent predictor of LAA stasis, followed by LA volume index. LA Sres < 13% was recommended to predict LAA stasis with sensitivity of 90% and specificity of 74%.
Conclusions: LA Sres by TTE can noninvasively predict LAA stasis and may be used as a screening tool to assist in the detection of LAA stasis in patients with NVAF. (Cardiol J 2018; 25, 1: 87–96)
Keywords: strainstrain rateleft atrialleft atrial appendage stasisnonvalvular atrial fibrillationnoninvasive
References
- Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg. 1996; 61(2): 755–759.
- Providência R, Trigo J, Paiva L, et al. The role of echocardiography in thromboembolic risk assessment of patients with nonvalvular atrial fibrillation. J Am Soc Echocardiogr. 2013; 26(8): 801–812.
- Pollick C, Taylor D. Assessment of left atrial appendage function by transesophageal echocardiography. Implications for the development of thrombus. Circulation. 1991; 84(1): 223–231.
- Vianna-Pinton R, Moreno CA, Baxter CM, et al. Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr. 2009; 22(3): 299–305.
- January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014; 64: e1–76.
- Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015; 28(1): 1–39.e14.
- Fatkin D, Kelly RP, Feneley MP. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol. 1994; 23(4): 961–969.
- Troughton RW, Asher CR, Klein AL. The role of echocardiography in atrial fibrillation and cardioversion. Heart. 2003; 89(12): 1447–1454.
- Lowe B, Kusunose K, Motoki H, et al. Prognostic Significance of Left Atrial Appendage “Sludge” in Patients with Atrial Fibrillation: A New Transesophageal Echocardiographic Thromboembolic Risk Factor. J Am Soc Echocardiogr. 2014; 27(11): 1176–1183.
- Omran H, Jung W, Rabahieh R, et al. Imaging of thrombi and assessment of left atrial appendage function: a prospective study comparing transthoracic and transoesophageal echocardiography. Heart. 1999; 81(2): 192–198.
- Bernhardt P, Schmidt H, Hammerstingl C, et al. Patients at high risk with atrial fibrillation: a prospective and serial follow-up during 12 months with transesophageal echocardiography and cerebral magnetic resonance imaging. J Am Soc Echocardiogr. 2005; 18(9): 919–924.
- Klein AL, Murray RD, Grimm RA. Role of transesophageal echocardiography-guided cardioversion of patients with atrial fibrillation. J Am Coll Cardiol. 2001; 37(3): 691–704.
- Tamura H, Watanabe T, Hirono O, et al. Low wall velocity of left atrial appendage measured by trans-thoracic echocardiography predicts thrombus formation caused by atrial appendage dysfunction. J Am Soc Echocardiogr. 2010; 23(5): 545–552.e1.
- Uretsky S, Shah A, Bangalore S, et al. Assessment of left atrial appendage function with transthoracic tissue Doppler echocardiography. Eur J Echocardiogr. 2009; 10(3): 363–371.
- Motoki H, Dahiya A, Bhargava M, et al. Assessment of left atrial mechanics in patients with atrial fibrillation: comparison between two-dimensional speckle-based strain and velocity vector imaging. J Am Soc Echocardiogr. 2012; 25(4): 428–435.
- Shimizu T, Takada T, Shimode A, et al. Association between paroxysmal atrial fibrillation and the left atrial appendage ejection fraction during sinus rhythm in the acute stage of stroke: a transesophageal echocardiographic study. J Stroke Cerebrovasc Dis. 2013; 22(8): 1370–1376.
- Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Ann Intern Med. 1998; 128(8): 639–647.
- Kuppahally SS, Akoum N, Burgon NS, et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ Cardiovasc Imaging. 2010; 3(3): 231–239.
- Steinberg BA, Hellkamp AS, Lokhnygina Y, et al. ROCKET-AF Steering Committee and Investigators. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial. Eur Heart J. 2015; 36(5): 288–296.
- Providência R, Botelho A, Trigo J, et al. Possible refinement of clinical thromboembolism assessment in patients with atrial fibrillation using echocardiographic parameters. Europace. 2012; 14(1): 36–45.
- Saraiva RM, Demirkol S, Buakhamsri A, et al. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr. 2010; 23(2): 172–180.
- Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999; 82(5): 547–554.
- Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991; 22(8): 983–988.
- Kaya EB, Tokgözoglu L, Aytemir K, et al. Atrial myocardial deformation properties are temporarily reduced after cardioversion for atrial fibrillation and correlate well with left atrial appendage function. Eur J Echocardiogr. 2008; 9(4): 472–477.
- Tsai LM, Chen JH, Lin LJ, et al. Natural history of left atrial spontaneous echo contrast in nonrheumatic atrial fibrillation. Am J Cardiol. 1997; 80(7): 897–900.