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Abstract
Coronary chronic total occlusions (CTOs) are a common finding on coronary angiograms of patients 
with coronary artery disease, with an incidence ranging from 15% to 25%. Despite this high incidence, 
the proper treatment strategy in those patients often remains unclear. There are some observational stud-
ies suggesting that successful revascularization of a CTO can reduce angina symptoms, improve quality 
of life, improve the left ventricular ejection fraction, and lower mortality. However, not all patients will 
benefit from revascularization. Pre-procedural assessment of left ventricular function, ischemic burden, 
and viability seems to be crucial for a good outcome of the revascularization. The aim of this review is 
to compare currently available non-invasive imaging modalities with regard to utility in evaluation of 
patients with CTOs. (Cardiol J 2023; 30, 6: 1038–1048)
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Introduction

Coronary chronic total occlusions (CTOs) 
are a common finding on coronary angiograms of 
patients with coronary artery disease (CAD), with 
an incidence ranging from 15% to 25% [1]. Data 
from observational studies suggest that success-
ful revascularization of a CTO can reduce angina 
symptoms, improve quality of life, improve the 
left ventricular (LV) ejection fraction, and lower 
mortality [2, 3]. However, percutaneous coronary 
intervention (PCI) of a CTO is a challenging pro-
cedure with a higher complication rate, and greater 
radiation exposure and iodine-containing contrast 
exposure than PCIs performed for other lesions. 

Moreover, not all patients will benefit from 
revascularization. Taking all these facts into con-
sideration, proper pre-procedural assessment and 
patient selection is crucial for a good outcome 
with this procedure. According to the European 
Society of Cardiology (ESC) guidelines, PCI of a 
CTO should be considered in patients with angina 
symptoms resistant to medical therapy or with 
a large area of ischemia documented within the 
territory of the occluded vessel — class of recom-
mendation IIa [4]. 

The myocardium supplied by a CTO may 
display variable pathophysiological characteristics 
ranging from normal perfusion, stress-induced 
ischemia, resting ischemia, and hibernation, to 
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necrosis [5]. The decision is easier for patients 
suffering from angina despite optimal medical 
treatment; however, asymptomatic patients must 
be evaluated by paying attention to the presence 
of ischemia and the viable myocardium supplied by 
a CTO vessel before considering CTO revasculari-
zation [6]. In general, revascularization is recom-
mended for patients with a myocardium ischemia 
burden > 10% [4, 6, 7]. 

Since a complex, non-invasive assessment 
seems to be key to proper revascularization, this 
article aimed to review the imaging modalities used 
to evaluate LV function, contractility, ischemia, 
myocardial viability, and the anatomy of coronary 
arteries in patients with CTO.

Echocardiography

Transthoracic echocardiography is usually 
one of the first tests to be used in patients with 
suspected or known cardiovascular disease. It is 
feasible, inexpensive, and not as time-consuming 
as other tests. It provides information about left 
and right ventricular function, global and regional 
LV wall contractility, and valve competency. How-
ever, the accuracy of the examination depends on 
the quality of visualization, which is imperfect in 
most patients. 

Normal regional LV function of the myocar-
dium supplied by the CTO excludes non-viability 
[8]. On the other hand, akinetic segments with 
LV wall thinning are traditionally thought to be 
markers for scarring, with an end-diastolic wall 
thickness cut point of < 6 mm [9]. However, there 
is a prospective study demonstrating that 18% of 
thinned regions had limited scar burden assessed 
by cardiac magnetic resonance (≤ 50% of total ex-
tent) and showed LV function improvement after 
revascularization [10].

Dobutamine stress echocardiography (DSE) is 
a thoroughly investigated modality for the assess-
ment of myocardial viability, with a mean sensitivity 
of 84% and a mean specificity of 81% [11]. Asl et 
al. [12] showed good agreement between low-dose 
DSE and low-dose dobutamine-gated single-photon 
emission computed tomography (SPECT) scans for 
the evaluation of inotropic reserve in dysfunctional 
areas. 

For contractile reserve assessment, dobu-
tamine is used at low doses (5–20 µg/kg/min) 
[13]. Dysfunctional hypokinetic or akinetic LV 
segments with preserved viability should display 
improved performance in response to a sym-
pathetic stimulus. The presence or absence of 

contractile responses enables the differentiation 
between nonviable myocardium with transmural or 
extensive non-transmural infarction and stunned 
or hibernating myocardium [14]. 

Using higher doses of dobutamine (20–40 µg/
kg/min) might reveal ischemia and worsening con-
tractility. DSE is usually well-tolerated by patients 
and does not have many contraindications (e.g. ven-
tricular arrhythmias, recent myocardial infarction, 
unstable angina, and severe hypertension). How-
ever, the reliability of the results depends on good 
image quality and the investigator’s experience. 

Speckle tracking echocardiography tech-
niques, especially global longitudinal strain (GLS), 
are considered to be good parameters for detecting 
early subclinical LV dysfunction. These techniques 
have gained interest as potential markers of myo-
cardial ischemia [15–17]. However, more research 
is needed before they become routine practice for 
this indication (Fig. 1).

Recently, the novel echocardiography param-
eter myocardial work was introduced as a promis-
ing tool for the detection of significant CAD. The 
technique is based on the non-invasive LV pres-
sure-strain loop, counted from speckle-tracking 
echocardiography indexed to systolic blood pres-
sure. Global constructive work is defined as the 
sum of myocardial shortening during systole and 
myocardial lengthening during isovolumic relaxa-
tion. Global wasted work represents the opposite, 
i.e. myocardial lengthening in systole and short-
ening in isovolumic relaxation. Global myocardial 
work efficiency is the ratio of constructive work 
to the sum of constructive work and wasted work. 
Edwards et al. [18] examined 115 patients referred 
for coronary angiography and demonstrated that 
global myocardial work was superior to GLS in 
predicting significant CAD in those patients.

To summarize, the wide availability of echocar-
diography makes it a useful diagnostic tool for the 
assessment of LV function, contractile reserve, and 
viability. However, its accuracy is greatly depend-
ent on the investigator’s experience.

CMR

In recent years, cardiac magnetic resonance 
imaging (CMR) has become one of the main non-
invasive modalities for complex cardiovascular 
assessment. It is the gold standard for the evalua-
tion of cardiac morphology, left and right ventricle 
regional and global function, and ventricular vol-
umes. Due to its high tissue contrast and resolution 
with electrocardiogram-gating and breath-holding 

Figure 1. Global longitudinal strain of left ventricular showing an area of dyskinesis (pointed with an arrow) in patient 
with chronic total occlusion in circumflex artery. 
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techniques, the image quality is better than in echo-
cardiography. CMR contrast-enhanced sequences 
provide information about ischemia and viability. 

Gadolinium-based contrast agents used in 
magnetic resonance imaging have a very low risk 
of allergic reaction and other adverse events [19]. 
According to the current guidelines, renal impair-
ment with estimated glomerular filtration rate 
(eGFR) < 30 mL/min/1.73 m2 is no longer a con-
traindication for the administration of gadolinium-
based agents, when medically necessary [20, 21]. 
In patients with eGFR < 30 mL/min/1.73 m2 and 
in dialysis-dependent patients, macrocyclic agents 
or newer linear agents (group II agents) should be 
administered [21].

Myocardial perfusion is evaluated by the first 
pass perfusion of the myocardium using gadolin-
ium-based contrast documenting ischemia at the 
segmental myocardial level [22]. Three LV short-
axis slices (base, mid, and apex) are assessed 
during rest and stress perfusion sequences [23]. 
Stress perfusion hyperemia is achieved by using 
either vasodilators (e.g. adenosine, dipyridamole, 
regadenoson) or dobutamine. Compared to inva-
sive angiography and measurements of fractional 
flow reserve, CMR myocardial perfusion imag-
ing proved to be non-inferior to fractional flow 

reserve with respect to major adverse cardiac 
events [24].

Over the last couple of years, there has been 
rapid development of quantitative myocardial 
perfusion mapping techniques. Kellman et al. [25] 
implemented a fully automated quantitative tech-
nique for quantification of myocardial blood flow. 
The myocardial blood flow and myocardial perfu-
sion reserve measured with automated perfusion 
mapping CMR showed comparable repeatability 
to positron emission tomography (PET), which is 
considered a reference standard for non-invasive 
measurement of myocardial blood flow [26].

The late gadolinium enhancement (LGE) se-
quences are used for the detection of myocardial 
scar, which indirectly reflects myocardial viability. 
Contrast agents accumulate in regions of increased 
extracellular volume, such as areas of scarring or 
fibrosis. The pattern of LGE is crucial for the dif-
ferentiation between ischemic and non-ischemic 
myocardial injury [27]. An ischemic scar extending 
from the subendocardium to the epicardium can 
present with a subendocardial (non-transmural) 
or transmural pattern on LGE [28]. Studies have 
confirmed that the extent of LGE can determine 
myocardial viability and predict function improve-
ment after revascularization [29]. In general, 
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segments with less than 50% of transmural LGE 
are considered viable. Compared to PET as the 
reference standard, CMR assessment of myocardial 
viability in patients with CTO has proven to have 
high sensitivity, specificity, and accuracy [30]. In pa-
tients with contraindications to gadolinium-based 
contrast agents, viability can also be assessed using 
low-dose dobutamine stress CMR — similarly to 
DSE (Fig. 2).

Nowadays, new CMR techniques (T1 and T2 
mapping) have gained interest in tissue characteriza-
tion and viability evaluation with promising results 
[31]. CMR T1 mapping techniques give an opportu-
nity for tissue characterization and ischemia testing 
without contrast administration [32]. Native rest 
and stress T1 mapping allow for the differentiation 
of normal from infarcted and ischemic myocardium 
due to their different T1 values [33].

Considering the diversity of diagnostic pos-
sibilities, CMR seems to be a perfect tool for the 
assessment of CTO patients. It can also identify pa-
tients who are likely to benefit from revasculariza-
tion by demonstrating inducible perfusion defects 
and myocardial viability in CTO territories [34]. 

Nonetheless, CMR has some patient limita-
tions such as arrhythmias which worsen image 

A B

C D

Figure 2. A, B. Subendocardial (non-transmural) pattern of late gadolinium enhancement (LGE) pointed with arrows; 
C, D. Transmural pattern of LGE pointed with an arrow.

quality, claustrophobia, and the presence of CMR-
unsafe devices (e.g. epicardial leads or older types 
of pacemakers and cardioverter-defibrillators). 
Most pacemakers and defibrillators implanted 
nowadays have CMR-safe or CMR-conditional sta-
tuses, making them feasible for CMR examination.

CT

Computed tomography (CT) is a well-estab-
lished non-invasive method for diagnosing CAD. 
Computed tomography coronary angiography 
(CTCA) images can be reconstructed into a three-
dimensional (3D) view allowing the evaluation of 
the coronary tree anatomy in any desired plane 
with no loss of spatial resolution [35]. In addition 
to the visualization of the coronary artery lumen, 
CTCA allows the assessment of plaque morphol-
ogy and classification of lesions as calcified, non-
calcified, or partially calcified [36]. In the presence 
of CTOs, CTCA is a useful tool for predicting the 
success of intervention and for pre-procedural 
planning. Studies have identified some lesion 
features on CTCA that can predict an unfavorable 
PCI outcome such as: occlusion length > 15 mm, 
severe calcification, and blunt stump morphology 
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[37]. Opolski et al. [38] developed and validated a 
Computed Tomography Registry of Chronic Total 
Occlusion Revascularization (CT-RECTOR) score 
as a prediction rule for grading CTO difficulty by 
predicting the successful crossing of a guidewire 
within 30 minutes.

Advantages of CTCA pre-procedural planning 
include the assessment of proximal cap calcifica-
tion, occlusion length, artery tortuosity, and the 
evaluation of collateral circulation. These factors 
allow the cardiologist to choose the most suit-
able interventional approach (antegrade versus 
retrograde). 

Currently, CTCA gives mostly anatomical 
insight into CAD. Recently, there has been increas-
ing interest in myocardial perfusion and viability 
assessments using CTCA [39]. However, due to 
the lack of standardization and concerns regard-
ing radiation exposure and contrast dose, these 
techniques have not been used in routine clinical 
practice so far.

Computed tomography coronary angiography 
is a useful tool to optimize the revascularization 
strategy for treating a CTO with the ability to char-
acterize the plaque composition of the occluded 
artery, as well as visualize the lesion length, the 

course of the distal artery, and the associated side 
branches (Fig. 3) [35].

SPECT

Single-photon emission computed tomogra-
phy is a radionuclear modality utilizing gamma 
rays. This technique uses radioisotopes bound to 
a special ligand with the ability to bind to certain 
types of tissues. Currently, the most common 
radioisotopes used are technetium-99m (Tc-99m) 
and thallium-201 (Tl-201) [40]. Nowadays, hybrid 
SPECT/CT imaging is used in routine clinical 
practice allowing the co-registering of images with 
functional and structural information provided by 
the two imaging modalities [41, 42]. Radiation ex-
posure during the test is 6–13 mSV [43]. SPECT 
provides information on LV systolic function, 
myocardial perfusion, and viability. 

Assessment of myocardial perfusion is one of 
the main indications for SPECT and has a sensitiv-
ity of 83% and specificity of 77% [44]. During the 
test, stress and rest images are registered. Stress 
images are achieved by injecting radiotracers dur-
ing maximal hyperemia caused by physical exercise 
(e.g. treadmill test) or pharmacological agents 

A B

Figure 3. A. Right coronary artery coronary chronic total occlusion (CTO) with lesion length measured with red line; 
B. Right coronary artery three-dimensional reconstruction with CTO pointed with an arrow.
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such as adenosine, dipyridamole, regadenoson, 
or dobutamine. Adenosine is a vasodilator, which 
results in a 3.5- to 4-fold increase in myocardial 
blood flow [45]. The mechanism of adenosine-
induced myocardial perfusion defects is due to a 
greater increase in coronary flow in normal arter-
ies and a lesser increase in stenotic arteries [46]. 
Dipyridamole is a nonselective adenosine agonist. 
Both adenosine and dipyridamole are widely used 
as pharmacological stress agents, with moderate 
frequency of minor side effects such as dizziness, 
dyspnea, chest pain, headache, abdominal pain, 
and flushing [47, 48]. The main contraindications 
for both adenosine and dipyridamole admission 
are bronchospastic lung disease with ongoing 
wheezing or history of significant reactive airway 
disease and advanced conduction abnormalities, 
including 2nd- or 3rd-degree atrioventricular block 
[49]. Regadenoson is a highly specific adenosine 
A2A receptor agonist with a 9-fold stronger affinity 
for A2A receptors than adenosine, the stimulation 
of which provokes coronary vasodilation. Moreover, 
regadenoson affinity for other types of adenosine 
receptors (A1, A2B, and A3), the stimulation of 
which may cause severe side effects including 
atrioventricular block or broncho-constriction, is 
residual [50]. With fewer side effects than adeno-
sine and dipyridamole, regadenoson has gained a 
leading role in pharmacological stress perfusion 
tests. If the use of vasodilators is contraindicated, 

dobutamine represents an alternative stress modal-
ity [51]. Dobutamine is an inotropic agent, which 
increases coronary blood flow by increasing myo-
cardial workload [52].

After image registration, stress and rest myo-
cardial perfusion are compared using polar map 
displays and semiquantitative segmental scoring. 
A stress perfusion defect in a region with normal 
rest perfusion, called a reversible defect, is sugges-
tive of myocardial ischemia [53]. Segments with 
similar stress and rest perfusion defects, called fixed 
defects, can be an area of myocardial infarction or, 
less commonly, hibernating myocardium (Fig. 4).

The detection of a myocardial reversible perfu-
sion defect is crucial when considering coronary 
intervention, due to its association with improved 
outcomes and more favorable risk stratification. 
Based on previous research, a myocardial ischemic 
burden of > 10% is considered to be severe and is 
an indication for revascularization, which has been 
proven to reduce the absolute and relative risks of 
cardiac death compared to medical therapy [54]. 

Myocardial hibernation is a state of persis-
tent myocardial dysfunction (down-regulation of 
contractility) with preserved viability caused by 
insufficient myocardial blood flow [13]. SPECT can 
be a useful instrument in differentiating between 
hibernating myocardium and scar, which helps pre-
dict the likelihood of LV functional recovery after 
revascularization [55]. Whereas SPECT is more 

Figure 4. Single-photon emission computed tomography polar map display with reversible perfusion defect in basal 
and mid segments of inferior and posterior left ventricular wall (pointed with an arrow).
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widely available and less expensive, the diagnostic 
value for viability detection is lower than PET and 
is associated with a sensitivity of 83–87% and a 
specificity of 65–69% [7]. 

PET

Positron emission tomography is another radio-
nuclear modality that measures photons produced 
after positron emission from a radionuclide-tagged 
tracer molecule that binds to the target tissue. Most 
of the radionuclides used for PET imaging (e.g. 
oxygen-15, nitrogen-13, fluoride-18) are cyclotron 
products with short half-lives, making it necessary 
to have an onsite cyclotron [7], which makes this 
method less available and quite expensive. Like 
SPECT, a PET scan can be combined with CT 
(PET/CT) to provide both functional and anatomical 
images. PET myocardial perfusion imaging allows 
measurement of myocardial perfusion with approxi-
mately 89% sensitivity and 89% specificity [56]. The 
diagnostic performance of PET is superior to that 
of SPECT because it has higher spatial resolution 
allowing for the detection of even small perfusion 
defects, which may be underestimated in SPECT 
[8]. Moreover, PET enables myocardial blood flow 
to be quantified in absolute terms and the calculation 
of coronary flow reserve [8].

Positron emission tomography/computed to-
mography is recognized as the gold standard for 
assessing myocardial viability [57]. With the use of 
an 18F-fluorodeoxyglucose (18F-FDG) radiotracer 
as a marker of metabolism, its regional myocardial 
uptake reflects viable myocytes [58]. PET with 18F-
FDG combined with perfusion assessment provides 
a complete picture of the condition of myocardial 
tissue. Normal resting perfusion is a sign of intact 
capillary and sarcolemmal membranes and viable 
myocardium [8]. An irreversible perfusion defect 
(present on both stress and rest images) can repre-
sent either a myocardial scar or hibernating viable 
myocardium [8]. The differentiation of these two 
conditions is possible using metabolic imaging. 
Reduced perfusion with preserved 18F-FDG uptake 
(perfusion-metabolism mismatch) signifies hiber-
nating myocardium [5]. A rest perfusion defect in an 
area with no 18F-FDG uptake is indicative of a scar. 
The diagnostic accuracy for viability assessment 
using PET has proven to be excellent with a mean 
sensitivity of 88–93% and specificity of 58–73% [7].

To summarize, PET enables precise perfu-
sion and viability assessments with less radiation 
exposure (2–5 msV) [43] and a shorter time of 
image acquisition compared to SPECT. However, 

it is less available and more expensive, making it 
hard to implement as a routine CAD diagnostic tool.

CPET and ICG

Among patients with CAD, objectification of 
their symptoms might be difficult due to comorbid 
diseases such as heart failure, obesity, or chronic 
obstructive pulmonary disease, which can all 
manifest with dyspnea, chest pain, or impaired 
exercise tolerance. Cardiopulmonary exercise 
testing (CPET) allows the differentiation between 
pulmonary, cardiovascular, muscular, and cellular 
oxidative system disorders that can lead to exer-
cise intolerance. Several CPET parameters such 
as peak oxygen uptake (VO2), ventilation/carbon 
dioxide production (VE/VCO2) slope, and work ef-
ficiency (∆VO2/∆WR) have a well-established role 
in CAD patient assessment [59, 60]. 

Exercise impedance cardiography (ICG) is an-
other non-invasive modality to evaluate cardiovascu-
lar hemodynamic parameters during exercise. This 
method is based on measuring electrical signals re-
ceived from tissues and analyzing impedance signal 
changes during exercise [61]. ICG can assess stroke 
volume, cardiac output, cardiac index, and systemic 
vascular resistance. Even more importantly, it can 
assess changes in the above parameters in response 
to increasing exercise loads. A decrease in stroke 
volume during exercise, as measured by ICG, was 
proven to precede symptoms and ST changes in 
patients with ischemic myocardium (Fig. 5) [62].

Combining ICG and CPET examinations 
provides detailed insight into the hemodynamic 
changes occurring during physical exercise and 
can identify the underlying cause of the impaired 
physical capacity. Both methods are non-invasive, 
accessible, and offer added value to CAD patient 
assessment.

Conclusions

When choosing a non-invasive diagnostic mo-
dality for the assessment of a CTO patient, several 
aspects should be taken into consideration. Each 
modality has advantages and disadvantages, mak-
ing it impossible to point to one perfect diagnostic 
tool. Instead, a patient-tailored approach is the best 
solution (Central illustration).

Because the PCI of a CTO is associated with 
significant exposure to radiation, additional radia-
tion doses during non-invasive evaluation should 
be avoided or reduced to the minimum range, espe-
cially in younger patients. Nowadays, thanks to the 

Figure 5. Impedance cardiography diagram with a decrease in stroke volume during exercise (pointed with an arrow).
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it is less available and more expensive, making it 
hard to implement as a routine CAD diagnostic tool.
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diseases such as heart failure, obesity, or chronic 
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lar hemodynamic parameters during exercise. This 
method is based on measuring electrical signals re-
ceived from tissues and analyzing impedance signal 
changes during exercise [61]. ICG can assess stroke 
volume, cardiac output, cardiac index, and systemic 
vascular resistance. Even more importantly, it can 
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to increasing exercise loads. A decrease in stroke 
volume during exercise, as measured by ICG, was 
proven to precede symptoms and ST changes in 
patients with ischemic myocardium (Fig. 5) [62].

Combining ICG and CPET examinations 
provides detailed insight into the hemodynamic 
changes occurring during physical exercise and 
can identify the underlying cause of the impaired 
physical capacity. Both methods are non-invasive, 
accessible, and offer added value to CAD patient 
assessment.

Conclusions

When choosing a non-invasive diagnostic mo-
dality for the assessment of a CTO patient, several 
aspects should be taken into consideration. Each 
modality has advantages and disadvantages, mak-
ing it impossible to point to one perfect diagnostic 
tool. Instead, a patient-tailored approach is the best 
solution (Central illustration).

Because the PCI of a CTO is associated with 
significant exposure to radiation, additional radia-
tion doses during non-invasive evaluation should 
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advancement in imaging techniques, the average 
radiation doses during SPECT, PET, and CT exami-
nations are remarkably reduced. To avoid additional 
exposure to radiation, CMR or echocardiography 
can be performed. Another aspect to consider is 

renal impairment, which limits the use of CTCA 
and CMR. In these patients, echocardiography or 
nuclear medicine techniques should be preferred. 
Supraventricular and ventricular arrhythmias, 
especially atrial fibrillation, worsen the image 
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quality in modalities using electrocardiogram-
gating techniques such as CMR and CTCA. Several 
patient-related issues, such as claustrophobia or 
difficulties holding one’s breath, may also reduce 
the diagnostic value of CMR. 

Cost-effectiveness and accessibility are other 
important factors to consider, especially in coun-
tries with underfunded health care systems.

Based on the characteristics of each modality, 
the authors would like to propose a non-invasive 
diagnostic algorithm for CTO patients. Once the 
CTO is diagnosed, each patient should undergo 
echocardiography with global and regional LV wall 
contractility assessment. The second step should 
be ischemia and viability evaluation, preferably 
using PET, CMR, or SPECT, depending on local 
availability and patient characteristics. If none of 
the above is available, DSE may be utilized. In the 
case of pre-procedural planning difficulties, CTCA 
may be useful.

In some patients with ambiguous symptoms 
or inconsistent results of imaging modalities, ad-
ditional examinations with CPET and ICG can be 
performed to evaluate the cardiovascular hemody-
namic response to exercise.

In summary, there is a wide range of possi-
bilities for the non-invasive evaluation of patients 
with CTOs. The choice of test depends on patient 
characteristics and regional availability. Some 
patients will benefit from a combined assessment 
with more than one imaging modality. Overall, the 
key to a better outcome is correct identification 
of patients who require revascularization versus 
medical therapy based on their symptoms of is-
chemia, and taking into consideration the objective 
evidence of myocardial perfusion abnormalities and 
viability in the CTO region.
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