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Abstract
Several mechanisms have been suggested to explain positive cardiovascular effects observed in studies 
with sodium-glucose co-transporter 2 (SGLT2) inhibitors. The reduction in glucose reabsorption in 
proximal tubuli induced by SGLT2 inhibitors increases urinary glucose and sodium excretion result-
ing in increased osmotic diuresis and consequently in decreased plasma volume, followed by reduced 
preload. In addition, the hemodynamic effects of SGLT2 inhibition were observed in both hyper and 
euglycemic patients. Due to the complex and multidirectional effects induced by SGLT2 inhibitors, this 
originally antidiabetic group of drugs has been successfully used to treat patients with heart failure as 
well as for subjects with chronic kidney disease. Moreover, their therapeutic potential seems to be even 
broader than the indications studied to date. (Cardiol J 2023; 30, 1: 143–149)
Key words: sodium-glucose co-transporters (SGLTs), dapagliflozin, empagliflozin,  
heart failure, mechanisms

Sodium-glucose co-transporters

Sodium-glucose co-transporters (SGLTs) are  
a family of transmembrane proteins characterized 
by a shared transportation mechanism, in which 
extracellular sodium binding triggers a gate to 
open and trap glucose from outside the cell. Sub-
sequently, the transporter flips releasing glucose 
and sodium into the cytoplasm. At the end of the 
process the protein returns to its initial conforma-
tion. SGLT1 and SGLT2 are the two most known 
SGLTs [1]. 

The SGLT2 is mainly expressed in the kidneys 
on the epithelial cells in the proximal convoluted 
tubule. In spite of low affinity for glucose, the 
SGLT2-mediated renal reabsorption demonstrates 
a very high capacity [2]. The reabsorption of glu-
cose can be characterized as sodium-dependent 
with ratios of 1:1 and 2:1 for SGLT2 and SGLT1, 
respectively [1]. With only a fraction of tubular 
glucose reabsorption being SGLT1-mediated, the 
majority of the process, approximately 90%, is 
handled by SGLT2. The kidney capacity of reab-
sorbing of filtered glucose represents an extremely 
efficient mechanism of energy conservation. In 
addition to the kidney, the SGLT2 expression was 
demonstrated in the brain, liver, thyroid, muscles, 
and heart, while the SGLT1 expression was found 
in the intestine, trachea, kidney, heart, brain, testis, 
and prostate [1].

Sodium-glucose co-transporters inhibition

The first description of phlorizin’s ability to 
block renal glucose reabsorption in humans was 
published in 1933 [3]. Phlorizin is a glucoside of 
phloretin (a bicyclic flavonoid), which can mainly 
be found in apples, specifically in unripe fruits and 

root bark, as well as in smaller quantities in straw-
berries. Phlorizin, a competitive nonspecific SGLT 
inhibitor, competes for binding with D-glucose. It 
reduces both postprandial and fasting glycemia as 
shown in experimental animal model studies [4]. 
Due to these properties, orally active selective in-
hibitors of SGLT2 have been applied as antidiabetic 
agents. The glucose reabsorption limited by SGLT2 
inhibitors (SGLT2i) is characterized by the rapid 
onset of glycosuria (1–2 h), the dose-dependent 
offset of action in the range of 24–48 h and the gly-
cemia-dependent entity of glycosuria. Inhibition of 
SGLT2 lowers the renal glucose threshold into the 
euglycemic range. In humans, glucose reabsorption 
inhibition can maximally reach between 30% and 
50% [5]. Glycosuria induced by SGLT2i in diabetic 
patients results in further metabolic changes. The 
decrease in fasting and postprandial plasma glucose 
concentrations is caused by a partial drainage 
of glucose from the extracellular space. Plasma 
insulin concentration and the secretion rate de-
clines while plasma glucagon rises following the 
glycemia changes. A decreased insulin-to-glucagon 
ratio alters hepatic glucose metabolism, inducing 
endogenous fasting gluconeogenesis and attenuat-
ing its postprandial suppression [1]. Lower insulin 
levels reduce the lipolysis inhibition and cause 
an excess of free fatty acids to reach the tissues 
via the bloodstream. The extra free fatty acids 
delivery, together with the insulin-to-glucagon 
ratio reduction translates into ketogenesis [5, 6]. 
Normally, the excess of free fatty acids would lead 
to insulin resistance by competing with glucose 
utilization. However, on treatment with SGLT2i it 
is paradoxically associated with improved insulin 
sensitivity [5, 7, 8]. A schematic presentation of 
SGLT2 inhibitors’ mechanism of action is shown 
in the Central illustration.
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Clinical effects of sodium-glucose  
co-transporters inhibition

The loss of glucose on SGLT inhibitors chan-
nels into a substantial, between 250 kcal/day and 
450 kcal/day, whole-body deficit of energy. How-
ever, based on this negative calorie balance, the 
weight loss observed in clinical trials was far less 
than expected, which might be explained by an in-
creased caloric intake [9]. Countering this increase, 
through e.g., dietary counseling or pharmacological 
appetite quenching, could potentially strengthen 
the weight loss induced by SGLT2i [6, 9]. Complex 
metabolic changes induced by SGLT2i, including 
delayed clearance of low-density lipoprotein cho-
lesterol (LDL-C) from the circulation along with 
increased plasma lipoprotein lipase activity, lead 
to increase of LDL-C and decrease of triglycerides 
plasma levels [8].

Additional properties of SGLT2i include  
a dose-dependent reduction of serum uric acid 
levels [10] as well as a reduction of urinary albumin 
excretion in type 2 diabetes patients with prevalent 
micro- or macroalbuminuria [11].

Several mechanisms have been suggested to 
explain positive cardiovascular effects observed in 
studies with SGLT2i [1, 6, 12–14]. Heart failure 
(HF) is a condition characterized by excessive ac-
cumulation of fluid in the vascular compartment as 
well as in the interstitial space. Still, many patients 
suffering from HF experience arterial underfill-
ing due to a low cardiac output, which sometimes 
can be intensified by conventional treatment with 
diuretics. The reduction in glucose reabsorption 
in proximal tubuli induced by SGLT2i increases 
urinary glucose and sodium excretion resulting 
in increased osmotic diuresis and consequently in 
decreased plasma volume, followed by a reduced 
preload [6, 15]. 

Concomitant lowering of arterial stiffness and 
blood pressure leads to the afterload reduction  
[6, 15]. Sympathetic activation as well as decreased 
arterial filling, organ perfusion and blood pressure 
constitute some of the potential negative effects of 
excessively reducing blood volume [16]. However, 
heart rate has not been found to increase on treat-
ment with SGLT2i despite the consistent fall in 
arterial blood pressure in patients with type 2 dia-

Central illustration. Mechanisms of action of sodium-glucose co-transporter 2 (SGLT2) inhibitors.
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betes, indicating that autonomic balance shifts to-
ward the parasympathetic branch [1]. According to 
experimental studies, a more significant reduction 
of interstitial fluid volume than that of blood volume 
can be observed with SGLT2i. Hence, they could 
serve as better congestion control agents without 
diminishing arterial filling and tissue perfusion in 
contrast to conventional diuretic treatment [16]. 
The beneficial effect of SGLT2i on left ventricular 
(LV) systolic (an increase of LV ejection fraction) 
and diastolic (a decrease of LV filling pressure) 
function was shown in patients with HF. Moreover, 
a significant decrease in LV mass index, left atrial 
volume index was observed. These findings were 
associated with a significant decrease in plasma 
B-type natriuretic peptide concentration only in 
patients with a baseline value ≥ 100 pg/mL [17].

The hemodynamic effects of SGLT2 inhibition 
were observed in both hyper and euglycemic pa-
tients [1, 5]. Regardless of these favorable changes 
a decrease of hemoglobin A1c (HbA1c) concentra-
tion, body weight, and blood pressure, as well as 
an increase in hematocrit, hemoglobin and albumin 
concentration, were noted [1, 5, 12, 18–20].

It has been proposed that the SGLT2 inhibition 
driven effects can be explained by the restoration 
of both the anabolic and catabolic states cycling and 
the housekeeping processes of the cells, which are 
facilitated by caloric offloading through glucosuria. 
This fasting-like effect, not seen with other anti-
hyperglycemic drugs, triggers nutrient deprivation 
pathways, including stimulation of gluconeogenesis 
and ketogenesis to promote cellular homeostasis 
[21–23]. The gluconeogenesis and ketogenesis are 
regulated by endogenous nutrient deprivation sen-
sors silent information regulator T1, proliferator-
-activated receptor gamma coactivator 1-alpha 
and fibroblast growth factor 21, which are known 
to exert cardioprotective effects in experimental 
models [23]. The aforementioned benefit occurs to 
be mediated by alleviating oxidative stress and pro-
moting autophagy. This degradative pathway plays 
a crucial role in lysosome-dependent disposing of 
dysfunctional cellular components that constitute 
a significant cause of cell damage [13, 22, 23]. 

On the other hand, clinical trials have not 
shown a reduction in HF events related to met-
formin stimulation of the adenosine monophos-
phate–activated protein kinase, a known sensor 
for nutrient deprivation that does not induce ke-
togenesis. Therefore, the main focus of the positive 
cardiovascular and renal effects of SGLT2 inhibition 
is the boost in ketone bodies production as a more 
potent fuel source for mitochondria compared to 

free fatty acids [1, 5, 12, 13, 23, 24]. The rapid-onset 
renal and cardiovascular benefits demonstrated in 
the trials’ outcome remain consistent with this very 
elegant metabolic theory [13, 18, 19, 25].

It has also been postulated that SGLT2i di-
rectly inhibit Na+/H+ exchanger (NHE) 1, leading 
to reduced sodium and calcium cytoplasmic levels 
and to increase in mitochondrial calcium levels, 
thus restoring mitochondrial function and stimulat-
ing energy production [26, 27]. 

Solini et al. [28] demonstrated the influence of 
dapagliflozin on the expression of miRNAs related 
to HF pathophysiology: upregulation of miR30e-5p  
and downregulation of miR199a-3p. Moreover, 
SGLT2 inhibition preserves renal vasodilating 
capacity. The aforementioned effects operate 
independently of the diuretic and blood pressure-
lowering properties of dapagliflozin [29]. They also 
showed a significant dapagliflozin-induced rise in 
magnesium concentrations, which are known to be 
inversely associated with risk for coronary heart 
disease and HF deaths. Therefore, this might con-
tribute to the cardiovascular protection exerted by 
SGLT2i [28, 30]. 

Administration of SGLT2i is associated with 
the acute decrease in creatinine clearance related to 
resetting macula densa tubuloglomerular feedback. 
Inhibition of proximal sodium absorption delivers an 
excess of sodium to the macula densa, which acts 
as a trigger releasing vasoconstrictive molecules. 
This mechanism results in vasoconstriction of the 
glomerular afferent arterioles reduces glomerular 
filtration rate and protects against the harmful im-
pact of blood pressure increases and fluctuations 
on the glomerular capillaries located downstream 
[31]. Nevertheless, the renoprotective effects that 
SGLT2i exert cannot be easily explained only by 
their actions to lower blood glucose, blood pressure, 
or glomerular filtration pressures.

In the cardiovascular outcome trials increase 
in hematocrit was observed, but the mechanism 
of this phenomenon was not clearly explained [18, 
19]. In the EMPA-HEART study, empagliflozin use 
was associated with an increase in erythropoietin 
level. Several mechanisms at the kidney level may 
be responsible for this effect [32]. The rise in he-
matocrit suggests that SGLT2i influence hypoxia-
inducible factors (HIFs; specifically, HIF-1a and 
HIF-2a). This property could be the underlying 
reason for their ability to prevent nephropathy from 
progressing [33]. Defective nutrient deprivation 
signaling, oxidative and endoplasmic reticulum 
stress as well as renal hypoxia are all features of 
type 2 diabetes. These conditions tend to cause 
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a shift in HIF-1a/HIF-2a activities ratio through 
simultaneous HIF-1a activation and HIF-2a sup-
pression. The resulting balance change stimulates 
profibrotic and proinflammatory pathways in both 
tubular and glomerular cells [33]. Several small 
studies with SGLT2i confirmed a slight reduction 
in serum inflammatory markers: high sensitivity 
C-reactive protein, tumor necrosis factor-alpha, 
interleukin-6, and interferon-gamma, which was 
summarized by Bonnet and Sheen [29]. Moreover, 
SGLT2 inhibition with dapagliflozin was shown to 
slow down the progression of diabetes-associat-
ed renal tubulointerstitial fibrosis by improving 
hyperglycemia-induced activation of the signal 
transducer and activator of transcription-1/trans-
forming growth factor-beta 1 pathway [34]. Thus, 
reduction of inflammation can be considered as 
another mechanism explaining the beneficial effect 
of SGLT2i at the kidney and myocardium levels.

The summary of mechanisms of SGLT2i in 
various clinical settings is presented in Table 1.

Sodium-glucose co-transporters inhibitors

Several SGLT2i have been developed, includ-
ing canagliflozin, dapagliflozin, empagliflozin, er-
tugliflozin, ipragliflozin, luseogliflozin, remogliflo-
zin, sergliflozin, sotagliflozin, and tofogliflozin; 
however, only a few of them have been tested in 
large-scale, long-term, randomized clinical trials. 
Only dapagliflozin and empagliflozin were evalu-
ated in patients with HF regardless of a diabetes 
diagnosis [35–37]. Both these agents have shown 
high efficacy in reducing the primary outcome de-
fined as a composite of worsening HF or cardiovas-
cular death. Cardiovascular mortality and all-cause 
mortality were significantly decreased regardless 

of a diabetes diagnosis only with dapagliflozin [35], 
while in patients with type 2 diabetes, only with 
empagliflozin [12]. Treatment with empagliflozin 
and dapagliflozin was safe and well tolerated, re-
sulting in excellent adherence to medication —  
a key factor in the long-term treatment of patients 
with chronic diseases [38–49].

Based on the results of clinical trials, McMur-
ray and Packer [50] proposed a new algorithm for 
the sequencing of foundational treatments in HF 
patients with reduced ejection fraction. The 3-step 
algorithm should be applied in a patient in whom 
clinical euvolemia has been achieved with diuretics. 
The treatment should be started with simultane-
ous initiation of treatment with a beta-blocker 
and an SGLT2i (step 1); the addition of sacubitril/ 
/valsartan (step 2); and the subsequent addition of 
an mineralocorticoid receptor antagonists (step 3). 
The proposed approach is expected to maximize 
the likelihood that highly effective therapies will 
be implemented in a manner that rapidly prevents 
deaths and hospitalizations and enhances the tol-
erability of concurrently or subsequently adminis-
tered treatments [50].

Conclusions

Due to the complex and multidirectional 
mechanism of action of SGLT2i, this originally 
antidiabetic group of drugs has been successfully 
used to treat patients with HF and subjects with 
chronic kidney disease. Moreover, their thera-
peutic potential seems to be even wider than the 
indications studied so far.
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Table 1. Multidirectional mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors activity in 
various clinical indications.

Clinical setting Heart failure Type 2 diabetes Chronic kidney disease

Pathophysiological  
effect

Increased urinary sodium  
excretion, increased  

osmotic diuresis, decreased 
plasma and interstitial fluid 
volume, decreased preload, 
decreased arterial stiffness,  

decreased afterload,  
improved autonomic  

balance, decreased inflam- 
mation, decreased plasma  
B-type natriuretic peptide,  

increased plasma Mg

Decreased glucose  
reabsorption, increased  

insulin sensitivity, decreased 
HbA1c, decreased inflam-

mation, whole body energy 
deficit, weight loss

Decreased urinary albumin 
excretion, decreased plasma 

B-type natriuretic peptide, 
decreased inflammation, 

preserved renal vasodilating 
capacity, reduced glomerular 

hypertension, improved  
renal function,  

attenuated diabetes-induced 
tubulointerstitial fibrosis
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