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Abstract
Background: Coronary flow reserve (CFR) has prognostic value in patients with coronary artery dis-
ease. However, its measurement is complex, and automatic methods for CFR computation are scarcely 
available. We developed an automatic method for CFR computation based on coronary angiography and 
assessed its feasibility.
Methods: Coronary angiographies from the Corelab database were annotated by experienced analysts. 
A convolutional neural network (CNN) model was trained for automatic segmentation of the main 
coronary arteries during contrast injection. The segmentation performance was evaluated using 5-fold 
cross-validation. Subsequently, the CNN model was implemented into a prototype software package for 
automatic computation of the CFR (CFRauto) and applied on a different sample of patients with angio-
graphies performed both at rest and during maximal hyperemia, to assess the feasibility of CFRauto and 
its agreement with the manual computational method based on frame count (CFRmanual). 
Results: Altogether, 137,126 images of 5913 angiographic runs from 2407 patients were used to 
develop and evaluate the CNN model. Good segmentation performance was observed. CFRauto was suc-
cessfully computed in 136 out of 149 vessels (91.3%). The average analysis time to derive CFRauto was 
18.1 ± 10.3 s per vessel. Moderate correlation (r = 0.51, p < 0.001) was observed between CFRauto and 
CFRmanual, with a mean difference of 0.12 ± 0.53. 
Conclusions: Automatic computation of the CFR based on coronary angiography is feasible. This 
method might facilitate wider adoption of coronary physiology in the catheterization laboratory to assess 
microcirculatory function. (Cardiol J 2023; 30, 3: 369–378)
Key words: artificial intelligence, convolutional network, coronary flow reserve, X-ray 
angiography, coronary heart disease

Introduction

Myocardial ischemia can be due to epicardial 
or microvascular disease, which are the two main 
leading pathophysiological mechanisms. Fractional 
flow reserve (FFR) has consistently proven to be 

the most stable and accurate parameter to assess 
the hemodynamic severity of epicardial coronary 
stenosis. Guidance of percutaneous coronary 
interventions (PCI) by FFR results in significant 
improvement of outcomes in different clinical 
scenarios [1–3].
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Conversely, coronary microvascular dysfunc-
tion has been classically relegated to a secondary 
role due to different factors, among them the com-
plexity of its assessment. Coronary flow reserve 
(CFR), defined as hyperemia-to-rest flow ratio, 
depends on both epicardial and microvascular 
vessels, thus being one of the parameters used 
to estimate microvascular dysfunction. CFR can 
be non-invasively assessed by positron emission 
tomography [4], or invasively by means of Doppler 
wire [5] or thermodilution [6, 7]. However, all these 
methods are scarcely available in most cardiology 
departments, being restricted to few expert cent-
ers. Nonetheless, the evidence on the prognostic 
impact and clinical relevance of microvascular 
dysfunction is currently increasing [8, 9] and sub-
sequently, the need to increase the availability of  
a method to assess coronary microcirculatory func-
tion. Discordance between FFR and CFR assess-
ment occurs in up to 32% of cases [10], because they 
offer clinically relevant complementary information. 
Patients without epicardial disease (normal FFR) 
but microvascular dysfunction (low CFR) have  
a significantly worse prognosis than those with both 
normal FFR and CFR [8]. Furthermore, a recent 
study has challenged the paradigm of revasculariza-
tion in lesions with low FFR but preserved CFR [9].  
This evidence is, however, hardly pervading clinical 
practice, due to the limited availability of current 
methods to assess CFR [11]. 

Image-based computational methods of physi-
ology have substantially contributed to reducing 
costs and to expanding physiology guidance in 
PCI. FFR can be accurately estimated by different 
computational methods based on coronary com-
puted tomography angiography [12], coronary an-
giography [13, 14], optical coherence tomography 
[15–17], or intravascular ultrasound [18]. Nonethe-
less, the feasibility of computational methods for 
the assessment of microcirculatory function has 
been limited, although some pioneer approaches 
have recently been proposed, with varying success 
[19, 20]. In the current study, we aimed to propose 
a novel automatic computational approach to esti-
mate CFR based on coronary angiography, dubbed 
CFRauto, and evaluated its potential to improve the 
availability of microvascular assessment for clinical 
decision-making in a cost-effective manner.

Methods

Study sample
A search of the database of the Corelab (Card-

Hemo, Med-X Research Institute, Shanghai Jiao 

Tong University, Shanghai, China) was performed, 
looking for patients with coronary angiography 
performed at rest or/and under maximal hyperemia. 
The exclusion criteria were as follows: 1) Patients 
with chronic total occlusion; 2) Patients with 
prior coronary bypass grafting of the interrogated 
vessels; 3) Angiographic images with significant 
overlap or foreshortening. Data of all patients 
with coronary angiography performed only at rest 
were used for the development and validation of 
the convolutional neural network (CNN) model. 
The remaining patients with coronary angiogra-
phy performed both at rest and under maximal 
hyperemia were used for independent validation 
of the CFRauto. Figure 1 shows the flow diagram 
of the study, explaining the use of the different 
datasets for CNN model development and CFRauto 

validation. The study protocol was approved by 
the institutional review board, and all patients had 
previously provided informed consent for enrol-
ment into the institutional database for potential 
future investigations.  

Vessel segmentation in the CNN 
Data annotation. Lumen contours of the 

three main epicardial coronary arteries with coro-
nary stenosis, namely the left anterior descending 
(LAD), left circumflex (LCx), and right coronary 
artery (RCA), in all patients were semi-automat-
ically annotated by experienced analysts, trained 
in quantitative coronary angiography (QCA) and 
regularly audited at the core laboratory. 

Development of the CNN model. An adapt-
ed CNN model in U-shape [21] was applied for 
segmentation of the main epicardial coronary arter-
ies. The model consisted of a contracting path for 
high-level feature extraction and an expansion path 
to produce a full-resolution segmentation image. 
Details of the architecture of the original U-Net 
have been described previously [21]. The U-Net 
was modified to optimize the segmentation of the 
vessel: two additional down-sampling layers were 
implemented on the U-Net structure to enlarge 
the receptive field and thus avoid discontinuity 
of detected centerlines. Moreover, the number of 
feature maps per layer was reduced to accelerate 
the computation speed (Fig. 2).

For the CNN training process, a combination 
of dice and focal losses was used as the loss func-
tion [22, 23]. Dice loss is widely used for image 
segmentation, with excellent results, while focal 
loss can be useful in cases of smaller vessel area 
with respect to the image size. The Adam optimi-
zation algorithm [24] was used to facilitate CNN 
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convergence. The whole training process has 70 
epochs in total, with a learning rate of 2 × 10-4 at 
the first 30 epochs. At the 31st and 61st epochs, the 
learning rate decreased to 0.4 times that of the 
previous learning rate. This setting facilitates CNN 
convergence while preventing overfitting.

The CNN model for LAD, LCx, and RCA 
segmentation was separately trained using the 
corresponding datasets. Model performance was 
evaluated by 5-fold cross-validation using evalu-
ation metrics of dice similarity index, precision, 
recall, and F1 score.

Coronary angiographies from the corelab

Exclusion criteria:
1) patients with chronic total occlusion
2) patients with prior coronary bypass grafting of the interrogated vessels
3) angiographic images with signicant overlap or foreshortening

Paired angiography performed both at
rest and under maximal hyperemia

Angiography performed only at rest

149 paired angiographies from 138 patients5,913 coronary angiographies from 2,407 patients

Model development and evaluation by 5-fold cross-validation

CNN model for main vessel segmentation Correlation between CFR  and CFRauto manual

Feasibility analysis for CFRauto

CFR  calculationautoAnnotation in the corelab

CFR  calculation using TIMI frame countmanual

Figure 1. Flow diagram of the study; CFR — coronary flow reserve; CNN — convolutional neural network; TIMI — 
Thombolysis in Myocardial Infarction.

Figure 2. The structure of the proposed convolutional neural network for vessel segmentation.
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Automatic CFR computation
The developed CNN model was integrated into 

a prototype software package (FlowPlus; Pulse 
Medical Imaging Technology, Shanghai, China) 
for automatic CFR calculation. Two loops of the 
same angiographic projection, at hyperemia and at 
baseline, should be uploaded into the software in 
the DICOM format. The trained CNN model auto-
matically segmented the vessel and subsequently 
delineated the vessel contour and centerlines. The 
length of the vessel was calculated for each frame 
according to the length of the centerline. Consid-
ering the frame rate, the curve of vessel length 
variation over time (length/time curve) could be 
easily derived. The phase of contrast injection was 
then automatically calculated as the period of the 
curve in which the length progressively increases. 
The flow velocity could then be easily calculated 
by fitting a straight line to the length/time curve 
during the phase of contrast injection, using the 
least-square method. The slope of this fitting line 
defined the rate of length change over time, and 
hence the flow velocity [25]. At this point, CFR 
could be derived as the quotient between hyper-
emic and rest flow velocities (Fig. 3). 

Validation of the automatic CFR computation
The automatically computed CFR (CFRauto) 

was validated on a different sample of patients, 
other than the one used for the development of the 
CNN model, considering manually calculated CFR 
(CFRmanual) as reference. A manual Thrombolysis 
in Myocardial Infarction (TIMI) frame count [26] 
was performed by experienced QCA analysts 

on the same angiography loops as the automatic 
count in all patients. TIMI frame count method 
needs to count the frames the contrast take from 
to point contrast just enter the vessel to the point 
of maximal filling of the vessel, then use the frame 
rate to obtain the filling time. Finally, the manu-
ally measured vessel length was used to calculate 
the flow velocity. Coronary flow velocities at hy-
peremia and baseline were then calculated, and 
subsequently the CFRmanual was derived, following 
the same rationale as previously described. The 
main difference between CFRauto and CFRmanual is the 
way the flow velocities are derived; in CFRauto CNN 
was used to automatically obtain flow velocities, 
while in CFRmanual the flow velocity was manually 
calculated by counting frames. The agreement and 
correlation between CFRauto and CFRmanual were 
then evaluated. 

Statistical analysis
Continuous variables were presented as mean 

± standard deviation or median (Q1–Q3) if a Gauss-
ian distribution could not be assumed. The correla-
tion between CFRauto and CFRmanual was evaluated 
using Pearson’s correlation test and linear regres-
sion analysis, taking CFRmanual as the standard ref-
erence. The proportional bias (slope from 1) and 
constant bias (the deviation of the intercept from 0) 
were evaluated in the linear regression. The agree-
ment between CFRauto and CFRmanual as continuous 
variables was assessed using Bland-Altman analy-
sis and the intraclass correlation coefficient for the 
absolute value (ICCa). A two-sided p-value ≤ 0.05 
was considered to indicate a statistically significant 

Figure 3. Workflow diagram describing the entire process of the proposed method; CFR — coronary flow reserve; 
CNN — convolutional neural network.

Same angiographic
projection at hyperemia

and baseline

Vessel segmentation
using CNN

Vessel contour outlining
and extraction of

centerlines

Phase of contrast
injection, based on
lenght/time curve

Vessel length calculation
using centerlines

Fitting a straight line to the
lenght/time curve during

phase of contrast injection

Lenght/time curve Calculate ow velocity
(= slope of tting line)

Calculate CFR
(= velocity at hyperemia/

/velocity at baseline)
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difference. Statistical analysis was performed using 
the MedCalc 18.2.1 (MedCalc Software Ltd, Acacia-
laan 22, 8400 Ostend, Belgium) software package.

Results

Baseline demographic data
Altogether, 137,126 images of 5913 coronary 

angiographic runs from 2407 patients were used 
for the development of the CNN model, comprising 
2543 LAD, 1538 LCx, and 1832 RCA runs. The in-
dependent sample was used to assess the feasibility 
of the CFRauto and its agreement with the CFRmanual, 
which consisted of 149 paired angiographies from 
138 patients. Clinical and lesion characteristics of 
the independent sample are presented in Tables 1 
and 2, respectively. 

Segmentation performance of the CNN
The segmentation performances of the pro-

posed CNN model were good in all epicardial coro-
nary arteries by 5-fold cross-validation, with mean 
dice coefficients values of 0.780 ± 0.007, 0.722 ±  
± 0.005, and 0.758 ± 0.003 for LAD, LCx, and RCA, 
respectively (Table 3). Figure 4 shows paradigmatic 
examples of the segmentation results for different 
vessels during contrast injection. Figure 5 shows 
some unsuccessful CFRauto computations.

Feasibility of automatic CFR analysis
CFRauto computation was successful in 136 

out of 149 vessels (feasibility 91.3%). Unsuc-
cessful CFRauto computations were due to poor 
visualization of contrast dye flowing (n = 7), mis-
segmentation of the catheter (n = 4), interposition 
of other anatomic structures (n = 1), and unusual 
angiographic view (n = 1).

Correlation and agreement analysis
The average value of CFRauto was 1.49 ±  

± 0.54. Moderate correlation (r = 0.51, p < 0.001) 
was observed between CFRauto and CFRmanual, with  
a slope 0.511 and an intercept 0.857 in the linear re-
gression (Fig. 6A). CFRauto showed moderate agree-
ment with CFRmanual (mean difference = 0.12 ± 

± 0.53, p < 0.001, ICCa = 0.50; 95% confidence 
interval [CI] 0.36–0.62) (Fig. 6B). Inter- and intra-
observer variability in CFRmanual calculation were 
0.09 ± 0.74 and 0.03 ± 0.42, with ICCa values 
of 0.62 (95% CI 0.41–0.76) and 0.71 (95% CI 
0.54–0.83), respectively.

Analysis time of automatic CFR computation
The average analysis time for computation of 

CFR per vessel was 18.1 ± 10.3 s on an off-the-
shelf workstation equipped with a 6-core Intel  
i7-8750H processor (Intel Corporation, Santa Clara,  
CA, USA; 2.2 GHZ), NVIDIA GeForce GTX 1050Ti 
graphics card (NVIDIA, Santa Clara, CA, USA), and 
16 GB of RAM.

Table 2. Baseline lesion characteristics (n = 149).

Index artery:

Left anterior descending artery 85 (57.0%)

Left circumflex artery 34 (22.8%)

Right coronary artery 30 (20.1%)

Percent diameter stenosis [%] 46.3 ± 8.2

Minimum lumen diameter [mm] 1.52 ± 0.36

Reference vessel diameter [mm] 2.82 ± 0.46

Values are number (%) and mean ± standard deviation.

Table 1. Baseline clinical characteristics (n = 138).

Age [years] 63.7 ± 9.2

Male 108 (78.2)

Body mass index [kg/m2] 26.7 (24.2–29.5)*

Hypertension 79 (57.2%)

Diabetes mellitus 37 (29.1%)*

Cardiovascular history:

Prior myocardial infarction 38 (27.5%)

Prior PCI 50 (36.2%)

Prior CABG 5 (3.6%)

Values are mean ± standard deviation, number (%) or median (in-
terquartile range). *Body mass index missing in 4 patients, diabetes 
mellitus missing in 11 patients; CABG — coronary artery bypass 
surgery; PCI — percutaneous coronary intervention

Table 3. Segmentation performance of the proposed model on left anterior descending (LAD), left  
circumflex (LCx), and right coronary artery (RCA) vessels using 5-fold cross-validation.

Dice Precision Recall F1

LAD 0.780 ± 0.007 0.763 ± 0.004 0.919 ± 0.004 0.834 ± 0.002

LCx 0.722 ± 0.005 0.748 ± 0.004 0.849 ± 0.005 0.796 ± 0.003

RCA 0.758 ± 0.003 0.777 ± 0.006 0.893 ± 0.004 0.831 ± 0.002
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Discussion

To the best of our knowledge, this is the first 
study validating a novel method based on artificial 
intelligence for automatic CFR computation from 
coronary angiography. The key findings of the 

present study are as follows: 1) The CNN model 
showed good performance in segmentation of the 
main coronary arteries from angiographic loops,  
2) Automatic CFR calculation from coronary angio-
graphy is feasible in 91.3% of cases; 3) Automatic 
CFR computation showed moderate agreement 

Figure 4. Segmentation results of left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). 
The first row of each group is the original image, the second row is the segmentation result, and the third row is the 
extracted vessel centerline. The white area is the segmentation mask and centerline mask.
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Figure 6. Correlation and agreement between automatic coronary flow reserve (CFRauto) and frame-counting CFR 
(CFRmanual).

Figure 5. Paradigmatic cases of unsuccessful automatic coronary flow reserve computations. The first row of each 
group is the original image, the second row is the segmentation result, and the third row is the extracted vessel 
centerline. Common mechanisms for failure are poor visualization of contrast dye (A), and mis-segmentation of the 
catheter (B) or of other anatomic structures.
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with conventional manual CFR calculation based 
on TIMI frame count. 

Physiology-guidance has consistently proved 
to result in better clinical outcomes than classical 
anatomic-guidance for the treatment of epicardial 
coronary disease in different clinical scenarios 
[1–3, 27, 28]. Nonetheless, patients with micro-
vascular disease have historically been neglected 
because of the scarce availability of methods to 
assess microcirculatory function. The access to 
positron emission tomography, Doppler wire, or 
thermodilution remains limited in most cardiology 
departments worldwide, so patients with micro-
vascular dysfunction are often denied a diagnosis. 
The cases are instead considered non-cardiologic 
and are referred for endless gastroenterological 
or psychiatric studies, thus resulting in consid-
erable frustration and depression, together with 
unnecessary costs for the health systems. The 
evidence on the prognostic relevance of microcir-
culatory dysfunction is currently compelling [8], 
and therefore the need to generalize its evalua-
tion is as unmet. A cost-effective angiography- 
-based method to estimate CFR could exponen-
tially increase the availability of microvascular 
assessment, without additional wiring or prolonga-
tion of the procedure. Some groups have proposed 
angiography-based computational methods to as-
sess the index of microvascular resistance (IMR),  
a parameter to specifically appraise the microcircu-
latory function, finding acceptable agreement with 
thermodilution [19]. Our study follows a similar 
approach, although it focuses on CFR and develop-
ing a model of artificial intelligence to simplify the 
calculation in the cathlab. The high feasibility of the 
proposed method (91.3%) suggests a broad practi-
cal applicability. In this first step, the CNN model 
focused on CFR calculation, a parameter depending 
on both epicardial and microvascular functions, 
although other parameters to assess microvascular 
dysfunction, like IMR, could similarly be derived in 
future studies following a similar rationale.

The applications of artificial intelligence in the 
field of coronary artery segmentation from angio-
graphy are expanding. Different CNN architectures 
have been proposed to segment the entire coronary 
tree [29, 30] or the main vessel [31]. Of note, our 
segmentation task is unique because all frames of 
the angiographic run covering the entire contrast 
injection were segmented. At early phases of the 
contrast injection, the main vessels appear short 
in length and the definition of the borders is poorer 
than at phases of complete filling, thus increasing 
the segmentation difficulty and potentially affect-

ing the evaluation of the overall segmentation 
performance. 

For all procedures involving artificial intel-
ligence, the first mandatory step is the validation 
vs. the same procedure manually performed by 
expert human operators. Thus, the current study 
validated an automatic method to calculate CFR, 
based on artificial intelligence, vs. the same manual 
computational method. This was not a validation of 
the computational method vs. an invasive standard, 
as previous studies have done [19, 20]. This kind 
of validation will be pursued in future studies once 
the CNN model has been fine-tuned, and it may 
provide interesting complementary information. It 
might help to understand the moderate agreement 
between manual and automatic methods for CFR 
calculation, notwithstanding the excellent perfor-
mance of the CNN model for the segmentation of 
the vessels. The correlation between CFRauto and 
CFRmanual is moderate. However, it is important to 
note that the manual computational method based 
on frame count is not the clinical standard for CFR 
measurement. The reproducibility of CFRmanual is 
only moderate, as indicated by the inter- and intra-
observer ICCa of 0.62 (95% CI 0.41–0.76) and 0.71 
(95% CI 0.54–0.83), respectively. Moreover, the 
values found in linear regression with a slope and 
an intercept that considerably deviated from 1 and 0,  
respectively, do not permit us to rule out propor-
tional or constant bias. This may be because the 
manual operators tend to count frames outside the 
steady perfusion period, especially at hyperemia and 
at high flow velocities, resulting in higher flow ve-
locities and CFR values than the automatic method, 
especially at the high extreme of the scale. However, 
the CNN model might be more consistent, accurate, 
and reproducible than the corresponding manual 
method, as in other CNN models [32]. Therefore, 
we consider that the variability of CFRmanual played 
a major role in the moderate correlation between 
CFRauto and CFRmanual. The validation of the method 
vs. an invasive standard might show that the CNN 
models outperform the manual calculation or oth-
erwise unravel details of the workflow that might 
eventually deserve further attention.

Limitations of the study
The CNN model focused exclusively on the 

calculation of CFR, a parameter that depends on 
both epicardial and microvascular function. Other 
parameters, like IMR, are more specific to as-
sessing microvascular dysfunction, and they could 
be similarly derived in future studies, following  
a similar rationale. As in other computational meth-
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ods of physiology, this approach loses accuracy in 
some anatomical scenarios, such as chronic total 
occlusions or bypass grafts, and might have lim-
ited feasibility in cases of extreme foreshortening 
or vessel overlap, which were excluded from the 
current study [13–15, 17, 33].

Conclusions

Automatic CFR computation using coronary 
angiography was feasible and showed a moderate 
agreement with the manual computational method 
based on frame count. Image-derived CFR calcu-
lation may facilitate wider adoption of coronary 
physiology and the assessment of microvascular 
function in routine clinical practice. 
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