Novel polygenetic variants evidenced in a patient with Jervell and Lange-Nielsen syndrome

Authors: Ana Cecilia Cepeda-Nieto, Carlos Ramiro Zamora-Alemán, Mauricio Cortes-Aguirre, Roberto Valdés-Charles, Cesar Rojas-Sánchez, Mauricio Andrés Salinas-Santander, Dan Hu, Hector Barajas-Martinez

DOI: 10.5603/CJ.a2021.0063

Article type: Research Letter

Submitted: 2020-12-02

Accepted: 2021-06-08

Published online: 2021-06-16

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Cardiology Journal" are listed in PubMed.
Novel polygenetic variants evidenced in a patient with Jervell and Lange-Nielsen syndrome

Ana Cecilia Cepeda-Nieto et al., Polygenetic variants found in JLNS

Ana Cecilia Cepeda-Nieto¹, Carlos Ramiro Zamora-Alemán¹, Mauricio Cortes-Aguirre¹, Roberto Valdés-Charles¹, Cesar Rojas-Sánchez¹, Mauricio Andrés Salinas-Santander¹, Dan Hu², Hector Barajas-Martinez³

¹Departamento de Investigacion, Facultad de Medicina Unidad Saltillo, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
²Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
³Department of Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA, United States

Address for correspondence: Hector Barajas-Martinez, PhD, FHRS, Cardiovascular Research Department, Lankenau Institute for Medical Research, Wynnewood, PA 19096, United States, tel: 484-476-8134, fax: 484-476-8533, e-mail: barajasmartinezh@mlhs.org

Jervell and Lange-Nielsen syndrome (JLNS) is an ion channel-caused cardioauditory syndrome characterized by a congenital neurosensorial bilateral deafness and a long QT interval. JLNS is inherited in an autosomal recessive manner and is caused by mutations in the KCNQ1 gene (potassium voltage-gated channel subfamily Q member 1) [1].

The proband was an 8-year-old male who presented with a family history of sudden death and congenital sensorineural deafness. Initial clinical evaluation of the proband showed a mild cranial trauma and minor occipital subgaleal hematoma. No significant cardiovascular findings were noted, but electrocardiography (ECG) analysis (ECG Edan SE-1200, USA) revealed a prolonged QT/QTc in the lead II (420/460 ms) (Fig. 1A, left). Despite the use of beta-blocker (2 mg/kg/day) therapy at home, the patient experienced a syncopal event related to emotional stress.

Viskin test [2] was performed, and the results did not support an long QT syndrome (LQTS)-related orthostatic event (baseline QTc 465 ms in resting phase, QTc MHR of 492 ms, and QTc recovery of 444 ms). An adrenaline test [3] was performed at doses of 0.025 μg/kg/min, enabling a QTc of 550 ms without an arrhythmic event (Fig. 1A, right), and met LQTS electrocardiographic criteria. QTc 686 ms was observed under stress after placement of the implantable cardioverter-
defibrillator (ICD) and beta-blockers. At follow up, the patient was ventricular arrhythmia-free or shock therapy during the 4 years after ICD implantation. After clinical and cardiac electrophysiology, the patient was diagnosed with JLNS.

Molecular genetic analysis was performed by next generation sequencing in the proband, and 4 family members were clinically affected (Fig. 1B). Electrocardiographic assessment of the mother and maternal grandparents revealed borderline QTc values. The electrocardiographies were measured by the Bazett formula. Only The index case was genotyped and the family members declined to do genetic testing until there was more evidence that genetic testing had to be recommended by a genetic counselor.

High throughput DNA sequencing was performed using an Ion Torrent Personal Genome Machine to target and sequence 87 candidate genes linked with inherited cardiac arrhythmia syndromes. These candidate genes were selected based on their relative expression in the human heart and their ability to modulate ion channel expression and function: ABCC8, ABCC9, ACTC1, ACTN2, AGTR1, AKAP9, ANK2, CACNA1C, CACNA2D1, CACNA2D2, CACNB1, CACNB2, CACNB3, CACNB4, CACNG4, CACNG5, CACNG6, CALM1, CALM2, CASQ2, CAV1, CAV2, CAV3, DSG2, DSP, DPP6, DPP7, DPP8, DPP9, DPP10, FGF12, FGF13, GATAD1, GJA5, GLA, GPD1L, HCN2, HCN4, HEY2, IRX3, IRX4, IRX5, JPH2, KCNA4, KCNA5, KCNA6, KCNN1, KCNN2, KCNN3, KCNK1, KCNK2, KCNK3, KCND3, KCNE1, KCNE2, KCNE3, KCNE4, KCNE5, KCNH2, KCNIP2, KNJ2, KCNJ8, KCNJ9, KCNJ10, KCNQ1, KCNQ2, PKP2, PRKAG2, PXDNL, RYR2, SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN7A, SCN10A, SCN1B, SCN2B, SCN3B, SCN4B, SEMA3C, SNTA1, SUR1A, SUR2A, TBX5, TRPM4, TTN. All genetic variants uncovered were confirmed using the gold standard Sanger sequencing. Polymerase chain reaction (PCR) products were purified with a commercial enzyme (ExoSAP-IT, USB, Cleveland, OH) and directly sequenced from both directions using BigDye Terminator v3.1 chemistry on an Applied Biosystems 3730DNA Analyzer (Life Technologies, Carlsbad, CA).

After signal processing and basecalling, the Ion Torrent Suite software was used to map the sequencing reads to the DNA reference sequence (hg19) and identify variants through the Variant Caller plugin as well as the Ion Reporter analysis tool. Ion Reporter compares all variations identified against NCBI’s dbSNP to rule out common SNPs, as well as the 1000 Genomes Project and Exome Sequencing Project to get published frequencies. All variations uncovered were probed in 200–400 healthy ethnically matched controls. Genetic variant under 0.05% minor allele frequency were considered mutations and above 0.05–2.5% rare variants, following American College of
Medical Genetics (ACMG) recommendations [4]. All variants were analyzed using several pathogenicity in silico prediction tools such as PolyPhen-2, SIFT and Grantham.

Three novel heterozygous exonic were identified, likely benign variants to be associated in this index patient diagnosed with JLNS, AKAP9(p.Ile2392Arg); JPH2(p.Gly52Ser); SCN10A(p.Thr440Ser), and one moderate pathogenic rare variant SCN7A(p.Tyr562Cys) [4]. Two mutations in KCNQ1 were already discovered in the patient (p.Gln356_Gln357del and p.Ala300Thr) [5, 6]. According to available research, this is the first evidence of polygenic variants in a confirmed case of clinically severe JLNS. In this case, polygenic variants may be explained by consanguineous relations among the patient’s relatives, consistent with local traditions still prevalent in small populations. Surprisingly, the ECG abnormalities manifested only in the index patient who carried the mutations and genetic variants in five different genes with a very interesting double deletion in KCNQ1 with a close physical protein-protein interaction with the AKAP9 gene (Fig. 1C). Based on the clinical and ECGs phenotype associated with LQTS one of the main culprit genes could be the doble mutations in the KCNQ1 gene and genetic variant in AKAP9 to induce QT prolongation. It has been described that multiple genes identified could play together a role in the development of the LQTS phenotype at the same time or to be associated with any cardiac arrhythmia syndrome [6].

Genetic variants found in the case reported have been rarely associated with disease in previous reports. The observed variant JPH2(p.Gly505Ser) has been related to hypertrophic cardiomyopathy [7], whereas the relationship of the observed variants in SCN10A and SCN7A genes have not been previously characterized for a JLNS-related phenotype. In another context, almost 30 pathogenic genetic variants of KCNQ1 gene have been associated with JLNS [8], meanwhile, both deletion and duplication of one or more exons of KCNQ1 are known to cause LQTS [9]. In the present study the two mutations in KCNQ1 have been related with LQTS and sudden unexpected death syndromes [5, 6]. KCNQ1 also has been found to co-interact with AKAP9 by reducing the IKs channels, and it has been associated with prolongation of the QT interval as a potential marker for long QT type 1-modified effects [10].

Localization of the KCNQ1 mutations and AKAP9 genetic variant in the proband are shown in Figure1D. The hypothesis herein, is based on the possible loss-of-function in the potassium in comparison to WT channels when predicted by in silico prediction [11]; however, in vitro functional studies may need it to clarify the ionic mechanisms. These potential pathophysiological deficiencies may alter the phenotypic manifestation of LQTS as well as the responsiveness to pharmacological therapies.
In summary, four novel genetic variants were found [AKAP9(p.Ile2392Arg); JPH2(p.Gly52Ser); SCN10A(p.Thr440Ser) and SCN7A(p.Tyr562Cys)] and two known mutations in KCNQ1 in a patient with ventricular arrhythmias with similarities to long QT type 1-modified effects. Moreover, none of these variants has been linked to either LQTS or other sudden cardiac death syndromes.

Conflict of interest: None declared

References


**Figure 1.** **A.** Clinical electrocardiography analysis; **Left.** Electrocardiography during the first syncopal event with QTc of 460 ms by Bazett formula; **Right.** Electrocardiography during the adrenaline test with QTc 550 ms by Bazett formula at the second syncopal event; **B.** Patient’s pedigree. I (1) Maternal grandfather; I (2) Maternal grandmother; I (3) Maternal granduncle; I (4) Maternal grandaunt; II (1) Patient’s father; II (2) Patient’s mother; II (3) Maternal uncle; III (1) Patient; III (2) Patient’s brother; III (3) Patient’s cousin; III (4) Patient’s cousin; SD — sudden death; **C.** Schematic molecular genetics and localization of KCNQ1 mutation and AKAP9 novel genetic variant. Long QT syndrome, like severe Jervell and Lange-Nielsen syndrome, is associated with sudden cardiac death syndromes. KCNQ1 mutation and AKAP9 variant and proteins location and possible interaction in the C-Terminus in the plasma membrane that maybe expressed in the brain, muscle and heart tissues; **D.** Molecular genetics of novel genetic variants (AKAP9; JPH2; SCN10A; SCN7A) and KCNQ1 mutations using bioinformatics.
**SCN7A**, Sodium Voltage-Gated Channel Alpha Subunit 7; **SCN10A**, Sodium Voltage-Gated Channel Alpha Subunit 10; **AKAP9**, A-Kinase Anchoring Protein 9; **KCNQ1**, Potassium Voltage-Gated Channel Subfamily Q Member; **JPH2**, Junctophilin 2; Global MAF, Global minor allele frequency; **MXL MAF**, Mexicans minor allele frequency; **SIFT**, Sorting Intolerant From Tolerant; **OMIM**, Online Mendelian Inheritance in Man.