Evidence of diagnostic value of ferritin in patients with COVID-19

Lukasz Szarpak1,2,3, Artur Zaczynski3, Dariusz Kosior4,5, Szymon Bialka6, Jerzy R. Ladny7,8, Natasza Gilis-Malinowska6, Jacek Smereka8,10, Luiza Kanczuga-Koda6, Aleksandra Gasecka11, Krzysztof J. Filipiak11, Milosz J. Jaguszewski9

1Maria Skłodowska-Curie Medical Academy in Warsaw, Poland
2Maria Skłodowska-Curie Bialystok Oncology Center, Bialystok, Poland
3Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Poland
4Department of Cardiology and Hypertension with Electrophysiological Lab, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Poland
5Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
6Department of Anesthesiology and Intensive Care, Medical University of Silesia, Katowice, Poland
7Chair of Emergency Medicine and Disaster, Medical University in Bialystok, Poland
8Polish Society of Disaster Medicine, Warsaw, Poland
9First Department of Cardiology, Medical University of Gdansk, Poland
10Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Poland
11First Chair and Department of Cardiology, Medical University of Warsaw, Poland

This paper was guest edited by Prof. Togay Evrin

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic forces medical personnel to search for alternative early diagnosis methods of the patient’s condition [1]. An essential element of the diagnosis of a patient with COVID-19 is to understand the impact of various laboratory tests on the severity of the disease. An example of this research can be determining the level of ferritin, which is considered an indicator of the body’s iron supply. As iron levels fall, the blood ferritin levels fall [2]. The concentration of 1 µg/L corresponds to 8 mg of iron in the reserve pool [3]. When healthy, 20% of the body’s iron is bound to ferritin. Ferritin bound iron accounts for 95% of the hepatic iron stores. According to World Health Organization, adult women’s norm ranges from 15 to 150 µg/L, for men from 15 to 200 µg/L [4]. Moreover, ferritin is considered an acute phase protein, so its concentration also increases inflammation and infections. This limits the possibility of using its determination to assess systemic iron resources, even in terms of the diagnosis of COVID-19 severity [5, 6]. Abbaspour et al. [7] showed that ferritin is a crucial mediator of immune dysregulation via direct immune-suppressive and pro-inflammatory effects, contributing to cytokine storm.

The present study aimed to determine the usefulness of ferritin as a predictor of a patient’s severity with COVID-19 in a performer systematic review and meta-analysis. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [8] and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines for reporting systematic reviews and meta-analyses of observational studies [9].

Three authors (L.S., J.S., and S.B) independently searched relevant literature. The current Pubmed, Embase, Cochrane, Web of Science, Scopus (from database inception to November 10, 2020) was explored. The whole search strategy used free words, including “ferritin” AND “COVID-19”
Figure 1. Forest plot of ferritin levels in severe versus non-severe groups. The center of each square represents the odds ratio for individual trials, and the corresponding horizontal line stands for a 95% confidence interval (CI). The diamonds represent pooled results; SD — standard deviation.

OR “SARS-CoV-2”. The reference lists of all eligible trials and reviews were screened for additional citations. Publications were restricted to the English language.

Twenty studies reported ferritin levels in severe and non-severe patient groups. Pooled analysis showed that it significantly correlated higher ferritin levels with the more severe condition of the COVID-19 patient (MD: 406.98; 95% CI: 319.41–494.55; p < 0.001; I²: 94%; Fig. 1). Detailed characteristics of the studies included in the meta-analysis are presented in Supplementary Digital Content. Higher ferritin levels were also associated with more frequent hospitalization in intensive care unit conditions (MD: 748.96; 95% CI: 47.75–1348.48; p < 0.001; I²: 89%), and higher mortality in COVID-19 patients (MD: 594.43; 95% CI: 345.7–843.17; p < 0.001; I²: 99%; Supplementary Digital Content).

In conclusion, this systematic review and meta-analysis show a close correlation between ferritin levels and the state of the COVID-19 patient. Higher ferritin levels were associated with a more severe patient condition, more intensive care unit exposure, and higher mortality.

Acknowledgements

Study supported by the ERC Research NET and Polish Society of Disaster Medicine.

Conflict of interest: None declared

References


