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Abstract
Background: Metabolic derangements related to tissue energetics constitute an important pathophysi-
ological feature of heart failure. We investigated whether iron deficiency and catabolic/anabolic imbal-
ance contribute to decreased skeletal muscle performance in men with heart failure with reduced ejection 
fraction (HFrEF), and whether these pathologies are related to each other.
Methods: We comprehensively examined 23 men with stable HFrEF (median age [interquartile range]: 
63 [59–66] years; left ventricular ejection fraction: 28 [25–35]%; New York Heart Association class I/II/III:  
17/43/39%). We analyzed clinical characteristics, iron status, hormones, strength and fatigability of fore-
arm flexors and quadriceps (surface electromyography), and exercise capacity (6-minute walking test).
Results: None of the patients had anemia whereas 8 were iron-deficient. Flexor carpi radialis fatigabi
lity correlated with lower reticulocyte hemoglobin content (CHR, p < 0.05), and there was a trend towards 
greater fatigability in patients with higher body mass index and lower serum ferritin (both p < 0.1).  
Flexor carpi ulnaris fatigability correlated with lower serum iron and CHR (both p < 0.05). Vastus 
medialis fatigability was related to lower free and bioavailable testosterone (FT and BT, respectively, 
both p < 0.05), and 6-minute walking test distance was shorter in patients with higher cortisol/FT 
and cortisol/BT ratio (both p < 0.05). Lower ferritin and transferrin saturation correlated with lower 
percentage of FT and BT. Men with HFrEF and iron deficiency had higher total testosterone, but lower 
percentage of FT and BT.
Conclusions: Iron deficiency correlates with lower bioactive testosterone in men with HFrEF. These 
two pathologies can both contribute to decreased skeletal muscle performance in such patients. (Cardiol J  
2021; 28, 3: 391–401)
Key words: heart failure, anabolic hormones, iron status, skeletal muscles,  
exercise capacity

391www.cardiologyjournal.org

clinicAL CARDIOLOGY
Cardiology Journal 

2021, Vol. 28, No. 3, 391–401
DOI: 10.5603/CJ.a2020.0138 
Copyright © 2021 Via Medica

ISSN 1897–5593 
eISSN 1898–018X

original article



Introduction

Metabolic derangements associated with ab-
normal energy generation, utilization, and storage, 
and hormonal disorders promoting and modulating 
these processes, constitute an important patho-
physiological feature of heart failure (HF) [1–7]. 
Disordered energy metabolism contributes to the 
progression of myocardial dysfunction and abnor-
malities seen in other tissues (such us skeletal 
muscles), and these processes promote each other 
in the mechanism of a vicious circle [1, 3, 8]. Being 
closely associated with abnormal tissue energet-
ics, both iron deficiency (ID) and catabolic/anabolic 
imbalance negatively impact symptoms, exercise 
capacity, and outcomes in patients with HF [9, 10]. 

In this study we investigated whether meta-
bolic derangements associated with abnormal 
mitochondrial energy metabolism, namely ID 
and catabolic/anabolic imbalance, contribute to 
decreased skeletal muscle performance in men 
with HF with reduced ejection fraction (HFrEF). 
Additionally, we evaluated whether these two 
pathologies (ID and hormonal abnormalities) are 
related to each other.

Methods

Patients
We decided to prospectively recruit only male 

patients due to the significant hormonal differences 
(influencing the functioning of skeletal muscles) 
in men and women. Study participants were re-
cruited among male patients of a tertiary referral 
cardiology department and related outpatient clinic 
dedicated to HF patients. In all participants we 
analyzed clinical characteristics and evaluated iron 
status, anabolic and catabolic hormones, skeletal 
muscle performance, and sub-maximal exercise 
capacity. Detailed inclusion and exclusion criteria 
are presented below. 

Inclusion criteria were as follows: 
—— male sex, age > 18 years;
—— left ventricular ejection fraction (LVEF) ≤ 40% 

as assessed in latest echocardiography;
—— an established diagnosis of HF (according to 

the criteria of the European Society of Cardi-
ology [11]);

—— clinical stability with no hospitalizations (ei-
ther planned or unplanned) within the last  
30 days;

—— written informed consent for participation in 
the study.

Exclusion criteria were as follows: 
—— acute coronary syndrome, coronary revascu-

larization, or major surgery within 90 days 
preceding the study;

—— malignancy (cancer) diagnosed within the 
previous 5 years;

—— cognitive impairment or inability to perform 
all procedures related to the study;

—— current or previous therapy with erythro-
poiesis-stimulating agents, intravenous iron, 
or hormonal therapy (except for finasteride 
administered for benign prostatic hyperplasia);

—— muscular, neurological, or orthopedic disor-
ders impairing muscle performance and/or 
physical fitness. 
The protocol was approved by the Bioethics 

Committee of Wroclaw Medical University, and all 
subjects gave written informed consent for partici-
pation in the study. The study was conducted in 
accordance with the Helsinki Declaration.

Hematology, iron status, hormonal  
measurements, and other laboratory tests

In all participants venous blood samples were 
taken in the morning (8–10 a.m. — important for 
credible hormonal measurements) following an 
overnight fast. The majority of laboratory tests 
were made from fresh venous blood. Some param-
eters were measured from frozen serum/plasma 
(after centrifugation the cryotubes were stored at 
–70oC) after collecting the material for all study 
participants (at the end of the study). All labora-
tory tests were performed in one laboratory: the 
central hospital laboratory of the Military Hospital, 
Wroclaw, Poland.

Hematological measurements were made in 
fresh venous blood anticoagulated with ethylene 
diamine tetra-acetic acid. Hemoglobin concentra-
tion, red cell indices, and reticulocytes were meas-
ured using the ADVIA 2120 hematology system 
(Siemens). Anemia was defined according to the 
World Health Organization (WHO): hemoglobin 
concentration < 13 g/dL in men [12]. 

Serum ferritin was measured using an electro-
chemiluminescence immunoassay (ECLIA) with  
a Cobas e601 module (Roche Diagnostics). Serum 
iron and unsaturated iron binding capacity (UIBC) 
were assessed using the colorimetric method with 
the Konelab Prime 60i system (Thermo Scientific). 
Total iron-binding capacity (TIBC) was automati-
cally calculated using serum iron and UIBC. Trans-
ferrin saturation (TSAT) was calculated as the ratio 
of serum iron (mg/dL) and TIBC (mg/dL) multiplied 
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by 100 and expressed as a percentage. ID was 
defined (according to HF guidelines) as serum fer-
ritin < 100 μg/L or serum ferritin 100–299 μg/L  
in combination with TSAT < 20% [11]. Serum 
soluble transferrin receptor (sTfR, mg/L) was 
measured using immunonephelometry with the 
BN II System (Siemens). Additionally, the following 
parameters obtained from automated blood count 
(ADVIA 2120 hematology system) were considered 
indirect indices of iron status: reticulocyte hemo-
globin content (CHR, pg) and the percentage of 
hypochromic red cells (PHRC, %) [9]. 

The plasma level of N-terminal pro-B type 
natriuretic peptide (NT-proBNP, pg/mL) was meas-
ured using a chemiluminescence immunoassay 
with the Dimension ExL system (Siemens). The 
serum level of high-sensitivity C-reactive protein 
(hs-CRP, mg/L) was assessed using immunone
phelometry with the BN II System (Siemens). 
One missing hs-CRP value was imputed with an 
available non-hs-CRP value of 5.53 mg/L. The 
estimated glomerular filtration rate (eGFR, mL/ 
/min/1.73 m2) was calculated using the Modification 
of Diet in Renal Disease equation [13].

For the assessment of catabolic/anabolic bal-
ance the following hormones were measured in 
morning venous blood: total testosterone (TT, 
nmol/L), estradiol (pg/mL), insulin-like growth fac-
tor-1 (IGF-1, ng/mL), and dehydroepiandrosterone 
sulfate (DHEAS, µg/dL). Based on albumin and sex 
hormone-binding globulin (SHBG) concentrations, 
we used an online calculator (http://www.issam.
ch/freetesto.htm) to estimate the fraction of free 
testosterone (FT, this fraction has the most potent 
biological activity) and bioavailable testosterone 
(BT = FT + albumin-bound testosterone; BT frac-
tion is available for peripheral tissues) [10, 14]. FT 
and BT were expressed in nmol/L and as the per-
centage of TT pool (%FT and %BT, respectively). 
We also measured morning cortisol (nmol/L), and 
the following ratios were calculated to evaluate the 
catabolic/anabolic balance in examined men with 
HFrEF: cortisol/TT, cortisol/BT, cortisol/FT, cor-
tisol/IGF-1, and cortisol/DHEAS [5]. TT, estradiol, 
DHEAS, and SHBG were measured using ECLIA 
with a Cobas e411 module (Roche Diagnostics), 
and cortisol was measured with ECLIA using  
a Cobas e601 module (Roche Diagnostics). IGF-1 
was measured using chemiluminescence immuno-
assay with a Liaison XL analyzer (DiaSorin).

Skeletal muscle strength and fatigability
For the assessment of skeletal muscle per-

formance, we measured handgrip and quadriceps 

strength, and the fatigability of forearm flexors 
and the quadriceps. Handgrip strength (N) of  
a dominant upper extremity was measured using the 
electronic dynamometer (Noraxon), and after the 
training the average from three maximal voluntary 
contractions was used for further analyses. Right 
leg quadriceps strength was evaluated by measuring 
quadriceps torque using an armchair with an isomet-
ric dynamometer. The torque was measured in a sit-
ting position with 90° flexion of the knee joint. The 
parameter was calculated for the maximal isometric 
knee extension maneuver. After the initial training, 
the measurements were repeated three times and the 
average value was used in further analyses.

Non-invasive surface electromyography 
(sEMG) was applied to objectively evaluate mus-
cle fatigability in different muscle regions: fore-
arm flexors (flexor carpi radialis and flexor carpi 
ulnaris) and quadriceps (vastus lateralis and vastus 
medialis) [15]. Rectus femoris muscle signal was 
not analyzed due to the overlapping myoelectric 
signal from the vastii [16]. For the purposes of 
current study, we used a four-channel sEMG 
station MyoTrace 400 (Noraxon) combined with  
a dedicated electronic handgrip dynamometer 
(or used with the aforementioned armchair to 
evaluate the quadriceps). The crude sEMG signal 
was processed using dedicated research soft-
ware: MyoResearch XP (Noraxon). Briefly, during  
a 10-second isometric exercise at 50% of predeter-
mined maximal handgrip/quadriceps contraction, the 
sEMG was recorded in four predefined regions, and 
after signal processing the decrease in frequency 
(of the total power range, Hz) between the first and 
the last second was calculated as an index of muscle 
fatigability (greater decrease in frequency indicates 
more tired muscle). Handgrip and quadriceps con-
traction curves in N and Nm, respectively, were 
displayed “live” on a large monitor to help the patient 
to precisely follow the required 50% of the maximum.

Sub-maximal exercise capacity
Standard 6-minute walking test (6MWT) was 

performed to assess sub-maximal exercise capac-
ity. Patients were walking at a comfortable (self-
set but as brisk as possible) pace along a marked  
30 m hospital corridor to cover the longest possible 
distance during 6 minutes. In case of any significant 
symptoms (e.g. dyspnea), the patient was allowed 
to slow down or even stop and rest.

Statistical analyses
Continuous variables were expressed as  

a median with lower and upper quartile (interquar-
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tile range). Categorized variables were expressed 
as a number and percentage. The intergroup differ-
ences between subjects with vs. without ID were 
tested using the Mann-Whitney U-test for unpaired 
samples or c2 test, where appropriate. 

In the first part of the statistical analyses we 
investigated the relationships between muscle 
function and metabolic derangements. We calcu-
lated Spearman’s rank correlation coefficients (r) to 
establish the relationships between HFrEF symp-
toms (New York Heart Association [NYHA] class), 
handgrip strength, quadriceps torque, indices of 
muscle fatigability, and 6MWT distance and the 
following: (1) clinical parameters (age, body mass 
index [BMI], LVEF, key laboratory parameters),  
(2) hematological parameters, (3) iron parameters, 
and (4) indices of catabolic/anabolic balance. Fur-
ther, we calculated Spearman’s rank correlation co-
efficients to investigate the relationships between 
iron and hormonal parameters.

Hormonal parameters in patients with vs. 
without concomitant ID as well as 6MWT distance 
according to NYHA class (I to III), hs-CRP (≥ 2 vs. 
< 2 mg/L), and cortisol/testosterone ratio (≥ vs.  
< median) were compared using the Kruskal-Wallis 
H test. 

A p-value of < 0.05 was considered statistical-
ly significant. Statistical analyses were performed 
using STATISTICA 13.3 data analysis software 
(TIBCO Software).

Results

Baseline characteristics of the examined 
men with HFrEF

The baseline characteristics of the examined 
patients according to the presence of ID are pre-
sented in Table 1. Although none of patients was 
anemic according to WHO criteria, 8 patients were 
iron-deficient. All subjects were taking evidence-
-based HFrEF pharmacotherapy, and 22 of them 
had either an implantable cardioverter-defibrillator 
or cardiac resynchronization therapy.

Metabolic derangements, skeletal muscle 
performance, and exercise capacity

The relationships between clinical variables, 
iron status, hormonal parameters, skeletal muscle 
performance, and exercise capacity are presented 
in Table 2. In the examined men with HFrEF lower 
quadriceps strength correlated with higher sTfR 
and PHRC, but these associations were not valid 
for handgrip strength. Flexor carpi radialis fati-
gability was greater in patients with lower CHR, 

and there was a trend towards greater fatigability 
in subjects with higher BMI and lower serum fer-
ritin. Analogously, flexor carpi ulnaris fatigability 
correlated with lower serum iron and lower CHR, 
and there was a trend towards greater fatigabil-
ity with decreasing hemoglobin. Vastus medialis 
fatigability was inversely correlated with FT and 
BT. 6MWT distance was greater in patients with 
lower NYHA class as well as in those with lower 
hs-CRP, cortisol/BT ratio, and cortisol/FT ratio 
(Fig. 1, Table 2). 

Iron status versus catabolic/anabolic  
balance in men with HFrEF

The associations between iron parameters 
and measured hormones are presented in Table 3. 
Serum ferritin was related to %FT, %BT, and estra-
diol, and TSAT correlated with %FT and %BT (all  
p < 0.05). Indirect measures of ID (PHRC and CHR) 
were not related to hormonal parameters. Although 
male patients with ID compared with those without 
ID had higher TT, both %FT and %BT were sig-
nificantly lower in iron-deficient subjects (Fig. 2).  
SHBG was higher in men with HFrEF with vs. 
without ID (median 72 vs. 46 nmol/L, p = 0.01), 
but these two groups had comparable albumin 
concentrations (p = 0.9).

Discussion

The current study provides additional evi-
dence that metabolic derangements related to dis-
ordered tissue energetics, namely ID and catabolic/ 
/anabolic imbalance, can contribute to decreased 
skeletal muscle performance in non-anemic men 
with stable HFrEF. 

The complex and multifaceted skeletal and 
respiratory myopathy constitutes an important ele-
ment of HF pathophysiology [17, 18], and muscle 
dysfunction contributes to the symptomatology of 
HF [8]. Importantly, the key role in limiting HF 
patients’ sub-maximal and maximal exercise per-
formance is attributed to increased skeletal muscle 
fatigability, which has already been demonstrated 
for HF as long as three decades ago [18–23]. There 
is evidence that early and extensive skeletal mus-
cle fatigue in HF results from intrinsic pathology 
of this tissue rather than insufficient perfusion, 
decreased cardiac reserve, or abnormal neural 
signaling [19, 20, 23, 24]. Although skeletal myo-
pathy constitutes an important pathophysiological 
feature of HF, the precise mechanisms underlying 
muscular changes are not fully understood. In our 
study we have demonstrated that ID and catabolic/ 
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/anabolic imbalance can contribute to decreased 
skeletal muscle performance in men with HFrEF. 
It should be acknowledged that efficient energy 
metabolism of skeletal muscle tissue critically 

depends on the proper regulation of mitochondrial 
functioning, which is precisely orchestrated by 
undisturbed iron and hormonal status [25, 26]. 
Indeed, mammalian skeletal muscles are important 

Table 1. Baseline characteristics of examined men (n = 23) with heart failure with reduced ejection 
fraction (HFrEF) according to the presence of iron deficiency.

Variables All patients
(n = 23)

Iron deficiency (+)
(n = 8)

Iron deficiency (–)
(n = 15)

Clinical parameters

Age [years] 63 (59–66) 64 (60–66) 62 (56–65)

Body mass index [kg/m2] 29.7 (27.2–34.7) 28.7 (25.9–29.7) 32.3 (27.2–35.2)

New York Heart Association class I/II/III 4/10/9 (17/43/39%) 1/3/4 (13/38/50%) 3/7/5 (20/47/33%)

Ischemic heart failure etiology 13 (56%) 5 (63%) 8 (53%)

Left ventricular ejection fraction [%] 28 (25–35) 27 (23–33) 30 (25–37)

High-sensitivity CRP$ [mg/L] 1.59 (1.01–3.2) 1.43 (1.04–2.09) 1.73 (0.87–3.45)

Plasma NT-proBNP [pg/mL] 1312 (454–2414) 2404 (1141–4764) 960 (257–1511)b

eGFR [mL/min/1.73 m2] 76 (59–93) 74 (57–83) 86 (69–93)

Hematological parameters and indices of iron status

Hemoglobin [g/dL] 15.6 (14.1–16.1) 15.8 (14.8–16.5) 15.2 (14.1–16.1)

Reticulocytes [%] 7 (6–9) 8 (7–9) 7 (6–9)

Serum iron [µg/dL] 101 (89–134) 93 (69–108) 126 (94–141)b

Serum ferritin [µg/L] 129 (96–336) 77 (55–98) 288 (129–383)d

Serum soluble transferrin receptor [mg/L] 1.33 (1.09–1.84) 1.55 (1.36–2.05) 1.17 (0.95–1.54)a

Transferrin saturation [%] 28 (20–35) 20 (18–28) 34 (28–37)c

Reticulocyte hemoglobin content [pg] 33 (32–34) 33 (30–33) 33 (32–34)

Percentage of hypochromic red cells [%] 0.4 (0.2–0.9) 0.8 (0.4–1.6) 0.4 (0.1–0.6)

Hormones

Total testosterone [nmol/L] 18 (13–26) 26 (20–29) 16 (9–19)c

Free testosterone [%] 1.5 (1.3–1.9) 1.3 (1.1–1.4) 1.7 (1.5–2.1)b

Bioavailable testosterone [%] 37 (31–42) 32 (24–34) 40 (35–49)b

Estradiol [pg/mL] 24 (18–36) 38 (29–46) 21 (16–27)c

Insulin-like growth factor 1 [ng/mL] 194 (158–212) 193 (190–207) 196 (157–213)

Dehydroepiandrosterone sulfate [µg/dL] 102 (72–149) 97 (64–211) 139 (72–149)

Cortisol [nmol/L] 388 (317–464) 402 (284–442) 388 (323–482)

Major comorbidities

Arterial hypertension 15 (65%) 5 (63%) 10 (67%)

Chronic obstructive pulmonary disease 1 (4%) 1 (13%) 0 (0%)

Atrial fibrillation 15 (65) 6 (75%) 9 (60%)

Diabetes or prediabetes 10 (43%) 3 (38%) 7 (47%)

Skeletal muscle strength and sub-maximal exercise capacity

Handgrip strength [N] 367 (334–399) 368 (337–402) 367 (334–399)

Right quadriceps torque [Nm] 84 (69–91) 87 (67–99) 79 (69–91)

6-minute walking test distance [m] 423 (395–495) 438 (401–520) 415 (385–495)

$One missing high-sensitivity (hs) CRP value was imputed with available non-hs-CRP value of 5.53 mg/L. CRP — C-reactive protein; NT-proBNP 
— N-terminal pro-B-type natriuretic peptide; eGFR — estimated glomerular filtration rate. Data are presented as median (with an interquartile 
range) or number (with percentage), where appropriate. Handgrip strength was measured for dominant upper extremity. Statistical signifi-
cance legend for the comparisons between patients with vs. without iron deficiency: ap < 0.1 (trend), bp < 0.05, cp < 0.01, dp < 0.001. For 
details — see the ‘Methods’ section.
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target tissues for circulating steroid hormones, in 
which they exert their direct anabolic properties 
[27, 28]. Undisturbed iron status is also necessary 
for the optimal functioning of mitochondria, and 
therefore it warrants cellular energy maintenance 
[29]. Importantly, iron determines tissue oxidative 

capacity, which is a major determinant of endurance 
and energetic efficacy during sub-maximal physical 
efforts [30].

Our results demonstrating the relationships 
between skeletal muscle performance and par-
ticular metabolic derangements are consistent 
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Figure 2. Total testosterone concentration with free and bioavailable testosterone fraction (box plots with median 
[number], interquartile range [box], and minimum/maximum [whiskers]) in examined men with heart failure with 
reduced ejection fraction according to the presence (ID+) or absence of iron deficiency (ID–). #Note that free testos-
terone values were multiplied by 10 to include this parameter in one figure with total and bioavailable testosterone 
(divide by 10 for normal values in percent). P-values for the Kruskal-Wallis test are presented. For details — see the 
‘Methods’ section.
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Figure 1. Six-minute walking test distance (box plots with median [number], interquartile range [box], and minimum/ 
/maximum [whiskers]) in men with heart failure with reduced ejection fraction according to New York Heart Associa-
tion (NYHA) functional class, high-sensitivity C-reactive protein (hs-CRP), and the median of cortisol/free testosterone 
ratio (1478). P-values for the Kruskal-Wallis test are presented. For details — see the ‘Methods’ section.
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with previous studies conducted in this field. For 
example, Melenovsky et al. [31] demonstrated in 
an exercise phosphorus-31 magnetic resonance 
spectroscopy experiment that HF patients with 
ID had lower muscle strength, greater exertional 
muscle acidosis, and earlier metabolic shift to 
anaerobic metabolism. It is worth mentioning that 
we demonstrated in a previous study [32] that low 
serum ferritin correlates with inspiratory muscle 
weakness in men with HFrEF. Skeletal muscle 
dysfunction related to ID and catabolic/anabolic im-
balance is a potential explanation why patients with 
ID or depleted anabolic drive have lower exercise 
capacity than subjects without these derangements 
[25, 26, 32–34]. It was previously demonstrated 
that intravenous iron therapy improves exercise ca-
pacity in patients with HFrEF and ID irrespective 
of anemia [35], and there is limited evidence that 
testosterone therapy may have similar beneficial 
effects [36]. In this context, the results of a small, 
randomized, double-blind, controlled study regard-
ing iron isomaltoside in symptomatic HF should 
be acknowledged [37]. The authors demonstrated 
that intravenous iron repletion improves skeletal 
muscle energetics in both anemic and non-anemic 
subjects as assessed using phosphorus magnetic 
resonance spectroscopy [37]. Our study provides 
additional evidence regarding the consideration of 
HF as a “metabolic disease” [38, 39]. In our study, 
however, the distance covered in a 6MWT was 
related to catabolic/anabolic balance and inflam-
mation, but the relationship with ID did not reach 
statistical significance. The latter was probably 
due to the relatively small number of examined 
patients. Importantly, we are able to partially 
compare clinical status, hemoglobin, and anabolic 
hormones of male patients from this study with our 
historical cohort of 205 men with stable, chronic 
HFrEF (LVEF ≤ 40%) recruited in 2001–2005 
for another research project [33]. Although male 
HF patients from 2001–2005 had comparable age, 
NYHA class distribution, LVEF, NT-proBNP, and 
TT (p > 0.05 for all comparisons of mean ± stand-
ard deviation between the previous and this study), 
the current group of men with HFrEF had higher 
DHEAS (130 ± 98 vs. 88 ± 77 µg/dL, p = 0.02), 
IGF-1 (197 ± 52 vs. 134 ± 66 ng/mL, p < 0.001) 
and hemoglobin (15.3 ± 1.3 vs. 14.3 ± 1.5 g/dL, 
p = 0.002) as compared with the historical cohort 
[33]. The aforementioned data suggest that even 
clinically comparable groups of HF patients may 
subtly differ in particular hormonal parameters.

In this study we have also demonstrated the 
relationships between iron parameters and bioac-T
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tive testosterone. Although men with HFrEF and 
concomitant ID had higher TT compared with 
those without ID (and also higher SHBG, but not 
albumin), they presented with lower free and bio-
available fractions of this hormone. It should be 
acknowledged that the relationships between ID 
and hormonal status of men with HFrEF have not 
been studied so far, including large biomarker HF 
programs such as BIOSTAT-CHF [40]. The po-
tential explanation of why depleted anabolic drive 
correlates with ID is related to impaired intestinal 
absorption and malnutrition [40]. There is clinical 
and experimental evidence that dysregulated cata-
bolic/anabolic balance characterizing advanced HF 
promotes several maladaptive mechanisms within 
the gastrointestinal system, including intestinal 
hypoperfusion, edema, and anorexia [41–43]. The 
aforementioned pathomechanisms are responsible 
for disordered absorption of several microelements 
and further malnutrition, the pathologies of which 
are frequently observed in patients with HF [44, 
45]. Decreased absorption of iron is considered one 
of the key mechanisms explaining how patients 
with HF develop ID, apart from accumulation of 
iron in the mononuclear phagocyte system [46]. 
Although the relationships between catabolic/ 
/anabolic balance and ID have not been studied in 
HF so far, we have some data on neuroendocrine 
signaling and iron status in this population. In one 
cross-sectional study regarding more than 700 pa- 
tients with chronic HF, low TSAT was related 
to increased sympathetic activation, as reflected 
by higher circulating stress hormone norepine
phrine [47]. Both increased sympathetic drive and 
catabolic/anabolic imbalance are involved in the 
complex pathomechanism of progressive catabolic 
state occurring in HF, and they both contribute to 
cardiac cachexia [48]. It remains unclear whether 
these unfavorable trajectories are further promoted 
or only accompanied by concomitant ID. It is worth 
noting that in experimental animals testosterone 
mediates systemic iron status through inhibition of 
the transcription of hepatic hepcidin — the key iron 
regulator [49, 50]. Further studies are required to 
determine independent effects of ID and catabolic/ 
/anabolic imbalance on skeletal muscle perfor-
mance and exercise capacity in men with HFrEF.

Limitations of the study
We enrolled relatively a small number of 

subjects with HFrEF, and further studies in larger 
populations are needed not only to confirm the 
aforementioned relationships (metabolic derange-
ments — skeletal muscle function; iron status 

— hormones), but also to evaluate independ-
ent effects of disordered iron homeostasis and 
catabolic/anabolic imbalance on skeletal muscle 
performance. Additionally, we examined only men 
with HFrEF, and there are no data presented re-
garding either female patients or subjects with the 
two remaining strata of LVEF (HF with preserved 
and mid-range ejection fraction). Finally, in the 
current study there was no control group, and the 
presented relationships should be re-evaluated in 
an age-matched group of healthy men without any 
cardiovascular disease.

Conclusions

In this preliminary study we have demon-
strated that metabolic derangements related to 
energy generation and utilization, namely ID and 
catabolic/anabolic imbalance, can contribute to de-
creased skeletal muscle performance in men with 
HFrEF. Additionally, we have shown that there is 
a relationship between ID and reduced bioactive 
testosterone in these patients. 
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