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Abstract
Background: Inflammation is associated with increased sympathetic drive in cardiovascular diseases. 
The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activ-
ity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory 
cytokine-like activity in the extracellular space. Inflammation is associated with increased sympathetic 
drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI 
remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in 
the PVN, in terms of sympathetic activity and arrhythmia after MI.
Methods: Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce 
MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 µL  
every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was 
recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using pro-
grammed electrophysiological stimulation. After performing electrophysiological experiments in vivo, 
immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to 
detect the expression of HMGB1 and p-ERK in the PVN of MI rats.
Results: HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN 
microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and 
consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats.
Conclusions: These results suggest that MI causes the translocation of HMGB1 in the PVN, which 
leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN micro-
injection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia. (Cardiol J 
2019; 26, 5: 555–563)
Key words: HMGB1, ERK, hypothalamic paraventricular nucleus, sympathetic nerve, 
myocardial infarction

Introduction

Increasingly more attention has been given to 
the role of proinflammatory cytokines in cardiovas-
cular and cardiovascular-related injuries.

High-mobility group box 1 (HMGB1) is  
a member of the HMGB protein family, which is  
a highly conserved non-histone nuclear protein in-

volved in damage response. HMGB1 was a critical 
co-factor of somatic cell transcriptional regulation 
[1]. It plays roles in a wide variety of processes, 
including inflammation, immune responses, apop-
tosis and responses to injury [2, 3]. Furthermore, 
HMGB1 can be passively released from damaged 
cells to exacerbate inflammation through recep-
tors, including the receptor for advanced glyca-
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tion end products (RAGE) and toll-like receptors 
(TLR2 and TLR4) [4–6]. These receptors activate 
multiple intracellular signaling pathways, includ-
ing mitogen-activated protein kinases (MAPKs), 
extracellular signal-regulated kinase (ERK)1/2, 
and phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K)/protein kinase B (AKT). Phosphorylated 
(p-) ERK1/2 has numerous cytoplasmic and nuclear 
effects [7, 8]. Among its nuclear effects, p-ERK1/2 
can activate multiple nuclear transcription factors 
[7–10], and its products may include RAS compo-
nents and inflammatory mediators [9, 11, 12]. 

The paraventricular nucleus (PVN) is an in-
tegrative site in regulating sympathetic outflow 
and cardiovascular activity [13, 14]. Previous 
studies have shown that PVN is involved in exces-
sive sympathetic activation and enhanced cardiac 
sympathetic afferent reflex in chronic heart failure 
[15–19]. However, it remains unknown how inflam-
matory mediators form in the PVN and enhance 
sympathetic nervous system activity in acute 
myocardial infarction (AMI) rats. In the present 
study, a putative mechanism was examined. It was 
determined whether myocardial infarction (MI) 
could lead to HMGB1 release and ERK1/2 MAPK 
signaling activation in the PVN, thereby contribut-
ing to sympathetic activation. The present results 
indicate that HMGB1 and ERK1/2 MAPK signaling 
contribute to its generation and sympathetic activa-
tion, which therefore can be reduced by HMGB1 
antagonists. These findings show that this can be 
a potential target for AMI therapy.

Methods

Animals
All experimental procedures were conducted 

in accordance with the Shandong University Institu-
tional Animal Care and Use Committee guidelines 
for animal experiments, and were approved by the 
University’s Committee. Adult male Sprague–Daw-
ley rats (Charles River, Beijing, China), weighing 
250–280 g, were used for all experiments. These 
rats were housed in a temperature-controlled room 
(23 ± 2°C) with light-controlled animal quarters, 
and were provided free access to laboratory chow 
and water.

Location and catheterization of the PVN
Sixty rats were anesthetized via intraperito-

neal injection of chloral hydrate (40 mg/kg). Then, 
the rats were fixed on the brain stereotactic locator 
(RWD Life Science Co., Shenzhen, China), a skin 
incision was performed along the sagittal suture 

to expose the skull, and the anterior and posterior 
fontanelles were adjusted to the same level. The 
stereotaxic coordinates for the PVN were 1.8 mm 
caudal from the bregma, 0.4 mm lateral to the 
midline and 7.9 mm ventral to the dorsal surface. 
A stainless-steel casing with a core outer diameter 
of 0.6 mm and an inner diameter of 0.4 mm (RWD 
Life Science Co., Shenzhen, China) was implanted 
into the skull using a gripper instrument (RWD Life 
Science Co., Shenzhen, China). The cannula was 
fixed with dental cement, and penicillin powder 
was sprayed on the top of the skull. Then, the skin 
incision was sutured. Rats were fed in a single cage. 
After 1 week of recovery, 49 rats implanted with  
a cannula survived for further testing.

The MI model 
The 49 rats that were successfully implanted 

with a cannula were anesthetized via intraperito-
neal injection of chloral hydrate (40 mg/kg). The 
animals underwent a thoracotomy and pericardi-
otomy, and the left anterior descending coronary 
artery was ligated to establish the MI, as previously 
reported [20]. Sham rats underwent a thoracotomy 
and pericardiotomy without coronary artery liga-
tion. Rats underwent electrocardiography (ECG) 
monitoring using an animal biological function ex-
periment system (BL-420S, TaiMeng, China) dur-
ing the MI surgery. The infarction was confirmed 
by ST segment elevation, regional cyanosis and 
wall motion abnormalities. The ST segment (from 
the end of the QRS wave to the beginning of the 
T wave) elevation after ligation of coronary artery 
is one of the evaluation of the MI model (Fig. 1A). 
With respect to clinical importance, only rats with 
moderate infarct size (30–50%) were enrolled. 

PVN microinjection
Rats received bilateral PVN microinjections of 

chicken anti-HMGB1 polyclonal antibody (Shino-
Test Corporation, Tokyo, Japan; 10 µg in 10 μL of 
10 mM of Tris-buffered saline, pH 7.4, 5 µL every 
second day for seven consecutive days), a dose of 
anti-HMGB1 polyclonal Ab similar to that used in 
previous studies, or an equivalent volume of control 
IgG. The PE pipe with a length of 15–20 cm and 
the casing pipe with a diameter of 0.4 mm were 
connected, and these were subsequently connected 
to a microsyringe. The bilateral PVN microinjec-
tions were carried out using a micropump injection 
device (RWD Life Science Co., Shenzhen, China). 
The bilateral PVN microinjection volume was  
5 μL for each site. The injection rate was 0.5 μL/ 
/min. After the injection, the syringe was left for 
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an additional 5 min before it was slowly retracted. 
At the end of the experiment, 50 nL of Evans Blue 
(2%) was injected into the microinjection site for 
histological identification. Only the data from rats, 
in which the microinjection sites were within the 
boundaries of the PVN were used for analysis. 
Rats with microinjection sites outside the PVN or 
at the margin of the PVN were excluded from the 
data analysis. 

Electrophysiological experiments
After 7 days, the rats were anesthetized, as 

previously described. Then, a second thoracotomy 
was performed. The protocol for programmed elec-
trophysiological stimulation was similar to that de-
scribed in a previous study of the investigators [21]. 
Programmed electrical stimulation was performed 
to measure the ventricular effective refractory 
period (VERP), while inducing ventricular arrhyth-
mias (VAs). Briefly, the stimulation intensity was 
twice the threshold, and stimulus length was 5 ms. 
In order to induce VAs, the pacing involved a cycle 
length of 180 ms (S0), followed by 1–3 extrastimuli 
(S1, S2 and S3) at shorter coupling intervals. In order 
to determine the VERP, a single extrastimulus was 
introduced at progressively shorter intervals. The 
VERP was longest at the S1–S2 interval, which did 
not evoke a premature ventricular depolarization. 
The experiment was typically completed within 
10 min. The results were classified as follows: 

(1) inducible sustained monomorphic ventricular 
tachycardia (MVT); (2) inducible polymorphic ven-
tricular tachycardia (PVT), and ventricular fibrilla-
tion (VF); (3) no inducible ventricular tachycardia 
VT/VF. All rats underwent 6-lead ECG.

RSNA recording and measurement
A retroperitoneal incision was made for the 

isolation of the left renal sympathetic nerve. The 
nerve was cut distally to eliminate its afferent 
activity, and placed on a pair of silver electrodes, 
which were immersed in warm mineral oil. The 
renal sympathetic nerve activity (RSNA) was 
amplified with a four channel AC/DC differential 
amplifier (DP-304; Warner Instruments, Hamden, 
CT, USA) with a high pass filter at 100 Hz and  
a low pass filter at 3000 Hz. The RSNA was inte-
grated at a time constant of 100 ms. Background 
noise was determined, as previously reported [22]. 
Basal nerve activity (baseline) was determined by 
efferent RSNA at the beginning of the experiment. 
The RSNA activity during the experiment was 
calculated by subtracting the background noise 
from the recorded value. The RSNA responses 
were expressed as a percentage change from the 
basal value.

Heart tissue preparation
After the electrophysiological study, rats were 

sacrificed, and the hearts were rapidly removed. 

Figure 1. Evaluation of the myocardial infarction (MI) model; A. Electrocardiogram before (up) and after (down) 
ligation of coronary artery. The ST segment elevated after ligation of coronary artery; B. Representative histologic 
image of the heart stained with Massion’s trichrome. Sections from the sham operation (left) and MI (right) rat hearts, 
respectively. Myocytes are red and fibrotic tissues are blue.

A

B
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A sample of fresh cardiac tissue was immersed in 
10% formalin for 24 h, embedded in paraffin, cut 
into 10-μm sections, and stained with Masson’s 
trichrome (Fig. 1B). Then, corresponding heart 
positions were sampled in sham rats. Sections from 
sham group (Fig. 1A), MI group (Fig. 1B). Myocytes 
are red, and fibrotic tissues are blue.

ELISA
A rat noradrenaline (NA) ELISA Kit (Catalog 

Number CSB-E07022r, CUSABIO) was used to 
detect serum NE concentrations, according to 
manufacturer instructions. The intra- and inter-
sample variability for each kit was < 8%.

Western blot analysis
The expression of HMGB1 and p-ERK in the 

PVN were detected by Western blot analysis. For 
immunoblot analyses, proteins were isolated using 
a protein extraction kit (Beyotime Institute of Bio-
technology, Jiangsu, China). The extracted protein 
was measured using a BCA protein assay reagent 
kit (Pierce, Madison, WI, USA). Equal amounts of 
total protein (80 µg of protein/lane) were resolved 
on 5–10% SDS-PAGE gels, and transferred onto 
polyvinylidene difluoride membranes. Then, the 
membranes were blocked with 5% non-fat dry 
milk in phosphate buffered saline (PBS) contain-
ing 0.05% Tween 20, and incubated overnight 
at 4°C with the respective primary antibodies 
against HMGB1 (ab172730-Rabbit monoclonal IgG; 
1:20,000; Abcam) and primary antibodies against 
p-ERK (1:2,000; 9101; Cell Signaling Technology). 
Next, the membranes were incubated with horse-
radish peroxidase-conjugated goat anti-mouse 
or anti-rabbit secondary antibodies (1:10,000; 
Zhongshan Golden Bridge Biotechnology). The 
blots were developed using an enhanced chemi-
luminescence detection kit (Millipore, Billerica, 
MA), and visualized using a FluorChem E Imager 
(Protein-Simple, Santa Clara, CA). The densities 
relative to b-actin were analyzed using NIH ImageJ 
software.

Immunohistochemistry
After the electrophysiology studies, the brain 

was rapidly removed, and samples were immersed 
in 10% formalin for 24 h, embedded in paraffin and 
cut into 5-µm thick slices. The paraffin sections 
were deparaffinized, rehydrated and soaked in 0.1 M  
of citric acid buffer for 15 min at 92–98°C in a micro-
wave oven, and washed with PBS. Then, the sec-
tions were incubated with the primary antibodies 
of anti-HMGB1 (ab172730-Rabbit monoclonal IgG, 

1:5,000; Abcam) overnight at 4°C. Subsequently, 
the samples were incubated with horseradish 
peroxidase-conjugated secondary antibodies of 
rabbit anti-sheep IgG (KPL, Gaithersburg, MD, 
USA) and goat anti-mouse IgG (Zhongshan Golden 
Bridge Biotechnology) for 1 h at 37°C. Immunore-
-activity was developed with 3,3’-diaminobenzidine 
tetrahydrochloride (Zhongshan Golden Bridge 
Biotechnology). Finally, the sections were counter-
stained with hematoxylin, mounted and examined 
by microscopy.

Statistical analysis
All data were expressed as mean ± standard 

deviation (SD). The significance of differences 
in mean values was analyzed by the unpaired  
t-test. Analyses were performed using SPSS 17.0 
software (SPSS Inc., Chicago, IL, USA). The dif-
ferences were considered significant at p < 0.001.

Results

The expression of HMGB1 in the PVN
Using immunohistochemistry, the expres-

sion of HMGB1 in the PVN of the MI group and 
MI+Anti-HMGB1 polyclonal antibody group were 
measured. Few HMGB1 appeared in control and 
sham-operated PVN (Figs. 2A, B). Compared with 
sham-operated PVN, MI increased the density of 
HMGB1-positive nucleus in the PVN (Fig. 2C). In 
addition, density of HMGB1-positive nucleus was 
lower in MI PVN with anti-HMGB1 polyclonal 
antibody treatment, than in MI alone (Fig. 2D).

Effects of anti-HMGB1 polyclonal antibody 
on the expression of HMGB1 and p-ERK  
in the paraventricular nucleus

HMGB1 levels in the PVN were upregulated in 
MI rats, when compared with sham-operated rats 
(p < 0.001, Fig. 1). Moreover, HMGB1 levels were 
lower in MI with MI+Anti-HMGB1 polyclonal 
antibody, than in MI alone (p < 0.001, Fig. 1).

The nuclear protein levels of p-ERK in the 
PVN were higher in rats with MI, than in sham-
operated rats (p < 0.001, Fig. 1). Moreover, anti-
HMGB1 polyclonal antibody treatment significant-
ly reduced the MI-induced nuclear expression of 
p-ERK (p < 0.001, Fig. 3).

Effects of anti-HMGB1 polyclonal  
antibody on baseline RSNA 

Anti-HMGB1 polyclonal antibody (5 µL, qod,  
7 consecutive days) was microinjected into the PVN  
after MI, and RSNA was expressed as a percentage 



Figure 3. Western blot analysis of the protein levels of high mobility group box-1 (HMGB1) (25 kDa) and ph-pERK  
(42 kDa) in cytoplasmic protein homogenates of the paraventricular nucleus. The quantification is relative to b-actin 
levels. Data are presented as mean ± standard deviation; *p < 0.001 vs. sham; #p < 0.001 vs. MI+Anti-HMGB1 
polyclonal antibody.
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Figure 2. A–D. Representative immunostaining of high mobility group box-1 (HMGB1) in the paraventricular nucleus 
from sham-operated, myocardial infarction (MI), and MI+Anti-HMGB1 polyclonal antibody treated rats (magnification, 
×400). Brown represents the positive staining (arrows). Bar = 100 μm.
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change from the basal value. As shown in Figure 4, 
compared with the AMI group, RSNA responses 
decreased in the MI+Anti-HMGB1 polyclonal 
antibody groups.

Serum content of norepinephrine
In order to further examine the action of 

sympathetic activity, norepinephrine (NE) levels 
in serum were measured by ELISA. As shown in 
Figure 5, the NE level in MI+Anti-HMGB1 poly-
clonal antibody rats was higher than in rats in the 
control group (17.101 ± 0.490 vs. 14.949 ± 0.562; 

p < 0.001), and was lower in MI rats (21.047 ±  
± 1.358 pg/mL; p < 0.001).

Electrophysiological characterization
In order to further elucidate an association 

of VAs and MI in rats, programmed electrophysi-
ological stimulation was performed. No rat expe-
rienced spontaneous VAs during the placement of 
the electrodes, and none of the rats died during 
the electrophysiological study. VAs occurred in 
1/10 (10.0%) rats in the control group, which was 
significantly fewer than those in the MI+Anti- 

Figure 4. The segments of the original recordings obtained from individual rats in each experimental group show 
the responses of the renal sympathetic nerve activity (RSNA). Mean changes in RSNA after the microinjection of 
anti-HMGB1 polyclonal antibody into the paraventricular nucleus vs. the sham group; p < 0.001; MI+Anti-HMGB1 
polyclonal antibody treatment group vs. the MI group; p < 0.001.
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-HMGB1 polyclonal antibody (4/11, 36.4%) and MI 
(6/12, 50%) groups. The recordings of inducible 
VAs are presented in Figure 6.

Discussion

According to available research, the present 
study was the first to explore the role and mecha-
nism of HMGB1 in the PVN in the development of 
sympathetic overaction and ventricular arrhythmia 
in MI rats.

There are several mechanisms between pe-
ripheral sympathetic and ventricular arrhythmo-

genesis. The PVN of the hypothalamus is a critical 
site of autonomic and neuroendocrine regulation 
[23]. Inflammation is associated with increased 
sympathetic drive in cardiovascular diseases. In 
particular, recent studies have established a causal 
relationship between inflammation and the activa-
tion of the sympathetic nervous system [24, 25]. 
However, the mechanism of inflammatory media-
tors in sympathetic overactivity remains unknown. 
HMGB1 is normally found in the nucleus. When 
cell damage occurs, HMGB1 is translocated to the 
cytoplasm and released by the cell to act as a mul-
tifunctional cytokine with roles in infection, organ 
dysfunction, inflammation, and immune responses 
[26, 27]. Consistently, it was found that the expres-
sion of HMGB1 significantly increased in the PVN 
after MI in rats. The significant increase in HMGB1 
levels in the PVN after MI and the HMGB1 ex-
pression demonstrated by immunohistochemistry 
support the finding that a considerable amount of 
HMGB1 was released into the extracellular space.

Recent studies have revealed that the phar-
macological manipulation of neuronal activity 
within the PVN can markedly alter sympathetic 
nerve activity [28]. Therefore, the investigators 
determined the effect of HMGB1 in the PVN on 
sympathetic activity and arrhythmia after MI, as 
well as its possible mechanism through the bilat-
eral PVN microinjection of anti-HMGB1 polyclonal 
antibody, which is an HMGB1 antagonist.

One novel finding in the present study was that 
levels of HMGB1 and p-ERK were significantly 
elevated in the PVN, which was accompanied by 
high RSNA and high-risk VAs, in rats after MI.

In addition, another new finding in the present 
study was that the administration of anti-HMGB1 
polyclonal antibody in the PVN effectively inhibited 
the expression of HMGB1 and p-ERK in MI rats. In 
addition, it was found that the administration of anti-
HMGB1 polyclonal antibody in the PVN prevented 
an increase in RSNA, and reduced a high risk of VAs 
in MI rats. Therefore, it was speculated that HMGB1 
in the PVN after MI in rats may result in sympathetic 
overaction through the ERK1/2 signaling pathway.

There are at least two mechanisms by which 
ERK1/2 signaling might contribute to sympathetic 
excitation. Once activated, p-ERK1/2 can stimulate 
several transcription factors, such as activator-pro-
tein 1, Elk-1, nuclear factor kappa B and cyclic AMP 
response element-binding protein [7–10], in which 
the downstream products may include key excitato-
ry elements, such as angiotensinogen [29], the pre-
cursor of ANG II, AT 1 R [11, 12], tumor necrosis fac-
tor a and interleukin-1b [9, 30, 31], and COX-2 [32],  

Figure 6. Comparisons of the arrhythmia score 
between the four groups at 7 days post-myocardial 
infarction (MI).

Figure 5. Norepinephrine content in serum of rats. ELI-
SA results of the NE content in serum obtained from 
rats in the control group, myocardial infarction (MI) 
group and MI+Anti-HMGB1 polyclonal antibody group. 
Data are expressed as mean ± standard deviation. 
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the inducible enzyme that produces PGE2. A sec-
ond mechanism by which ERK1/2 signaling may 
contribute to increased sympathetic activation is 
by disinhibiting presympathetic neurons [33].

In summary, HMGB1 in the PVN in rats after 
MI regulate RSNA through ERK1/2 signaling, 
which may well-contribute to generation of ex-
citatory and inflammatory mediators in the PVN 
in MI rats. This is an important mechanism in 
sympathetic activation and VAs in rats after MI. 

Conclusions

Overall, these results indicate that the expres-
sion of HMGB1 in the PVN in MI rats and ERK1/2 
signaling may contribute to the generation of ex-
citatory and inflammatory mediators, which may 
participate in regulating the RSNA and increase 
the risk of VAs in MI rats. Manipulations designed 
to inhibit HMGB1 activation in the PVN may be an 
effective method for the present treatment of VAs 
after MI. These results may provide a fundamental 
mechanism and therapeutic method for the high 
incidence of VAs in patients after MI in the future.

Conflict of interest: None declared
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