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Abstract
Background: The preventive effects of laboratory personalized antiplatelet therapy (PAPT) strategy in-
cluding genetic detection and platelet function testing (PFT) on major adverse cardiac events (MACEs) 
and bleeding events in coronary artery disease (CAD) patients undergoing stenting has been extensively 
studied. Despite that, no clear conclusion can be drawn. In this study, a meta-analysis was performed 
to explore a more precise estimation of the benefits of laboratory PAPT.
Methods: Randomized controlled trials were identified by the use of search databases such as PubMed, 
Embase, and Cochrane Controlled Trials Register up to May 2017, and the estimates were pooled.
Results: Fourteen studies including 9497 patients met the inclusion criteria. The laboratory PAPT 
reduced MACEs risk (risk ratio [RR] 0.58, 95% confidence interval [CI] 0.42–0.80, p = 0.001), 
stent thrombosis (RR 0.60, 95% CI 0.41–0.87, p = 0.008) and myocardial infarctions (RR 0.43, 
95% CI 0.21–0.88, p = 0.02) compared to the non-PAPT group. No statistically significant difference 
was observed between the two groups regarding cardiovascular death (RR 0.77, 95% CI 0.51–1.16, 
p = 0.21), bleeding events (RR 0.96, 95% CI 0.81–1.13, p = 0.59) and ischemic stroke (RR 0.81; 95% 
CI 0.39–1.66, p = 0.57). The preventive effect on MACEs was more significant in patients with high 
on-treatment platelet reactivity (RR 0.46; 95% CI 0.27–0.80, p = 0.006).
Conclusions: Coronary artery disease patients after stenting could obtain benefits from laboratory PAPT.  
(Cardiol J 2018; 25, 1: 128–141)
Key words: personalized antiplatelet therapy, percutaneous coronary intervention, 
platelet function testing, genetic detection, meta-analysis

Introduction

Dual antiplatelet therapy consists of P2Y12 
receptor antagonist such as clopidogrel, prasugrel, 
or ticagrelor, in combination with aspirin. This 

therapy represents the main medical treatment 
in patients with acute coronary syndrome (ACS) 
after percutaneous coronary intervention (PCI), 
and in secondary prevention of atherothrombotic 
events [1, 2].
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Among them, clopidogrel used to be the most 
broadly prescribed P2Y12 receptor inhibitor with 
undisputable benefits especially in combination 
with aspirin. However, since 2003, studies suggest-
ed that the pharmacodynamic effect of clopidogrel 
considerably varies among individuals, implying 
that it may lead to the occurrence of ischemic or 
bleeding events [3, 4]. These events were once 
known as clopidogrel resistance, or clopidogrel 
non-responsiveness, and they are now identified 
as high on-treatment platelet reactivity (HTPR). 
Up to 25–50% of patients treated with clopidogrel 
show inadequate pharmacological response and 
a consequent inadequate protection from ma-
jor adverse cardiac events (MACEs) [5, 6]. The 
meta-analysis performed by Sofi et al. [7] revealed  
a significant association between residual plate-
let reactivity under clopidogrel treatment and 
recurrent cardiovascular events. Thus, in order 
to improve the antiplatelet effect of clopidogrel, 
personalized antiplatelet therapy (PAPT) is in-
creasingly more important.

In clinical practice, some laboratory tests 
include platelet function test (PFT) and genetic  
detection andare available to fulfill PAPT in  
a relatively objective manner. Nevertheless, the 
routine measurement of platelet reactivity has not 
been widely implemented, and lack of consensus 
concerning optimal method and the best cut-off 
value associated with clinical risk has hindered 
the consideration of platelet function testing in 
clinical guidelines. According to a systematic 
review performed by Winter et al. [8], although 
PAPT monitored by PFT seems to be feasible, 
the contradictory results of smaller registry stud-
ies and larger randomized trials with regards to 
outcome remains uncertain. Another approach 
is the genotype test. As a pro-drug, clopidogrel 
requires enteric and hepatic transformation by 
the cytochrome P450 (CYP) system to exert its 
antiplatelet effect. CYP2C19 enzyme seems to 
have the most prominent role in the production 
of clopidogrel active metabolite, while CYP2B6, 
CYP1A2, CYP3A/A5, and CYP2C9 show lesser 
involvement [9]. According to the systematic 
review performed by Osnabrugge et al. [10], at 
least 11 meta-analyses on the association between 
CYP2C19 loss-of-function alleles and clinical ef-
ficacy of clopidogrel were identified until 2014. 
However, the conclusions of these meta-analyses 
were not consistent.

Recently, many studies evaluating the risk 
of MACEs and bleeding events were performed 
among patients receiving clopidogrel carrying dif-

ferent CYP2C19 genotypes or presenting different 
HTPR status as measured by PFT, including sev-
eral randomized controlled trials (RCTs), such as  
GRAVITAS [11]. However, the conclusions of these 
studies are not consistent. In this study, a meta-
analysis was performed to further evaluate the 
benefits of PAPT in coronary artery disease (CAD) 
patients. Compared with previous studies, our 
meta-analysis included all PAPT available, not only 
PFTs but also genetic detection as intervention.

Methods

Trial selection and search strategy
All published RCTs enrolling CAD patients 

treated with PAPT according to genetic detection 
or PFT for at least 1 month were selected. Con-
trolled intervention was the standard antiplatelet 
therapy not guided by genetic detection or PFT.

The search involved various computerized da-
tabases: PubMed (up to 31 May 2017), Embase (up 
to 31 May 2017), and Cochrane Controlled Trials 
Register (up to May 2017), searching the following 
items: genotype OR (genetic testing) OR (genetic 
polymorphism) OR (platelet function testing) OR 
(platelet reactivity) OR (VerifyNow) OR platelet-
works OR (light transmission aggregometry) OR 
(multiple electrode aggregometry) OR (Platelet 
Function Analyzer) OR (vasodilator stimulated 
phosphoprotein) OR (thrombelastography) OR 
(Cone and Platelet Analyzer)) AND (clopidogrel) 
OR (cangrelor) OR (elinogrel) OR (prasugrel) OR 
(ticagrelor), with the following filters: “Clinical 
Trial, Humans, English” in PubMed and “Con-
trolled Clinical Trial, Humans, English” in Embase. 
In addition, the references of the collected studies 
were checked for additional analysis.

Trials belonging to the following categories 
were excluded: (i) non-RCTs; (ii) subjects not 
treated with P2Y12 receptor antagonist; (iii) 
treatment duration < 1 month; and (iv) trials 
with no mention of MACEs or bleeding events 
prevention. Two investigators (Y. Zhang and  
P. Zhang) independently selected the studies 
according to the following steps: (i) titles and ab-
stracts examination to remove irrelevant reports;  
(ii) full text collection of potentially relevant 
reports; (iii) full-text reports examination for 
compliance of studies with eligibility criteria; and 
(iv) final decisions on study inclusion and data 
collection. Any discrepancies were resolved by 
consensus. If a consensus could not be reached, 
the senior author (Y.L. Hou) made the final deci-
sion for trial eligibility and data extraction.
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Statistical analysis
Results of the outcome were expressed as risk 

ratio (RR) with 95% confidence interval (CI) for 
each study. A pooled effect was calculated using 
a random-effects model. Heterogeneity was as-
sessed using Q and I2 statistic. Subgroup analysis 
and meta-regression were performed to localize 
the source of heterogeneity. Sensitivity analysis 
was performed through the trim and fill method. 
Publication bias was evaluated using funnel plot and 
Egger’s regression method. All statistical analyses 
were performed using Review Manager 5.3 and 
STATA 12.0. Statistical significance was defined 
as p < 0.05 (2-sided).

Results

A total number of 1055 relevant articles were 
retrieved from PubMed (561), Embase (633), and 
Cochrane Controlled Trials Register (854). Among 
them, 14 studies [11–24] reporting the differences 
in terms of MACEs and bleeding events between 
9497 patients with and without the PAPT were 
considered eligible for our meta-analysis (4878 
randomized to PAPT and 4619 to control) (Fig. 1). 
The baseline characteristics of the patients and 
trials key features are shown in Table 1. All the 
enrolled patients suffered from CAD and under-
went stenting. The antiplatelet strategy in PAPT 

Figure 1. Flow diagram of the trial selection process; CAD — coronary artery disease; CCTR — Cochrane Controlled 
Trials Register; PK — pharmacokinetics; PD — pharmacodynamics; PPI — proton-pump inhibitor; PAPT — personalized 
antiplatelet therapy.

 480 excluded based on full-text reports
          437 no mention of PAPT
         43 treatment duration < 1 month
 4 no full text

561 from PubMed
633 from EMBASE

854 from CCTR

1078 after removing duplicate records of the same report

443 excluded based on titles/abstracts
 4 study designs
 2 observational studies
 328 PK/PD studies
 55 non-CAD patients
  39 healthy volunteers
  16 other
 24 pharmacogenomics studies
 28 not treated with P2Y12 receptor agonist
  8 PPI
  4 statins
  4 cilostazol
  2 abciximab
  2 bivalirudin
  2 omega-3 ethyl esters
  6 others

635 after exclusion based on titles/abstracts

498 after linking together multiple reports of the same study

Retrieved full text for detailed evaluation

14 studies included in meta-analysis
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groups was adjusted according to genotype or PFT. 
In addition, there were 4 abstracts from European 
Society of Cardiology Congress 2016 involving the 
benefits of PAPT in CAD patients, but they were 
not included because of the lack of full text (P1835, 
P4214, P5598, and P5601).

The studies showed a significantly increased 
risk of MACEs (RR 0.58, 95% CI 0.42–0.80, p = 
= 0.001), stent thrombosis (ST; RR 0.60, 95% CI 
0.41–0.87, p = 0.008) and myocardial infarction 
(MI; RR 0.43, 95% CI 0.21–0.88, p = 0.02) in 
patients receiving PAPT compared to the stand-
ard therapy group. Furthermore, no statistically 
significant difference was observed between the 
above two groups in cardiovascular (CV) death 
(RR 0.77, 95% CI 0.51–1.16, p = 0.21), bleeding 
events (RR 0.96, 95% CI 0.81–1.13, p = 0.59) and 
ischemic stroke (RR 0.81; 95% CI 0.39–1.66, p =  
= 0.57). However, the heterogeneity was substan-
tial in MACEs (Chi2 = 58.71, p < 0.00001, I2 = 81%)  
and MI (Chi2 = 35.57, p < 0.0001, I2 =7 8%) groups 
(Fig. 2).

In order to identify the heterogeneity source 
in MACEs group, meta-regression and subgroup 
analyses were performed. The results revealed 
that the benefits of receiving PAPT had no clear 
linear relation with the follow-up period (Coef. 
= 0.120, Std. Err. = 0.059, p = 0.068) (Fig. 3). 
However according to subgroup analysis, there 
was obvious difference among the benefits after  
1, 6 and 12 months (among subgroups: Chi2 = 8.90,  
p = 0.01, I2 = 77.5%), but the heterogeneity was 
not well located (1 month: Chi2 = 0.01, p = 0.92,  
I2 = 0%; 6 months: Chi2 = 8.33, p = 0.02, I2 = 76%;  
12 months: Chi2 = 33.57, p < 0.00001, I2 = 82%). 
Another subgroup analysis revealed that the ben-
efits of PAPT was more significant in the HTPR 
subgroup (RR 0.46; 95% CI 0.27–0.80, p = 0.006), 
but not in the no mention subgroup (RR 0.70; 95% 
CI 0.48–1.00, p = 0.05). However, the heteroge-
neity was substantial in each subgroup (HTPR:  
Chi2 = 13.29, p = 0.02, I2 = 62%; No mention:  
Chi2 = 29.29, p < 0.0001, I2 = 83%; between 
subgroups: Chi2 = 1.48, p = 0.22, I2 = 32.3%). 
Finally, based on PAPT strategy difference, the 
source of heterogeneity was located. Although 
the numbers of trials in each subgroup were small, 
the heterogeneities in each subgroup were not 
obvious (light transmission aggregometry [LTA]:  
Chi2 = 0.63, p = 0.43, I2 = 0%; multiple electrode ag-
gregometry [MEA]: Chi2 = 1.36, p = 0.51, I2 = 0%;  
VerifyNow: Chi2 = 0.96, p = 0.62, I2 = 0%; vasodila-
tor stimulated phosphoprotein [VASP]: Chi2 = 7.04,  
p = 0.03, I2 = 72%), and it was found that all methods  

could obtain obvious benefits except VerifyNow and 
VASP (LTA: RR 0.55, 95% CI 0.37–0.83, p = 0.004; 
MEA: RR 0.47, 95% CI 0.32–0.67, p < 0.0001; 
CYP2C19 gene test: RR 0.29, 95% CI 0.14–0.64, 
p = 0.002; VerifyNow: RR 1.08, 95% CI 0.98–1.19, 
p = 0.12; VASP: RR 0.15, 95% CI 0.02–1.00,  
p = 0.05) (Fig. 4).

Sensitivity analysis was performed through 
the Trim and Fill method, and no obvious difference 
was found after Trim and Fill processes, suggest-
ing that the pooled estimates in each group were 
relatively robust (Table 2). Another post-hoc sen-
sitivity analysis was performed by omitting studies 
on the basis of subgroup analysis. It seems that 
VerifyNow assay is outlier, so all outcomes were 
redone without studies using VerifyNow, wherein 
similar results were obtained (Table 3). According 
to the funnel plot (Fig. 5) and Egger’s regression 
(Table 2), obvious publication biases were found 
in MACEs (Intercept: –2.726, 95% CI –3.657 to 
–1.796, p = 0.000), CV death (Intercept: –1.741, 
95% CI –2.472 to –1.010, p = 0.000), MI (Intercept: 
–1.649, 95% CI –3.090 to –0.207, p = 0.030), and 
ST (Intercept: –1.582, 95% CI –2.801 to –0.362,  
p = 0.016) groups.

Discussion

In recent years, the precision of medicine has 
been increasingly attracting attentions, PFTs and 
pharmacogenomics have been rapidly develop-
ing and are becoming an important approach for 
PAPT in reducing the risk of MACEs occurrence 
after stenting, especially in patients with HTPR, 
exactly as the present meta-analysis has discov-
ered. According to a recent RCT, both genotyping 
(CYP2C19) and PFT (VerifyNew p2Y12 assay) all 
resulted in an improved platelet inhibition [25].

Platelet function testing
At present, many PFT methods are available, 

while the cut-off values of clopidogrel low re-
sponse are different due to different test methods. 
A study [26] published in JAMA in 2010 compared 
the relationship between different PFT methods 
and clinical outcomes in 1069 patients undergoing 
elective PCI and taking clopidogrel from 2005 to 
2007. LTA, VerifyNow P2Y12, Plateletworks as-
says, IMPACT-R and platelet function analyzer 
(PFA-100) were used to test the platelet activity 
during treatment, with the application of receiver 
operating characteristic curve to analyze whether 
the cut-off has diagnostic value, as well as an out-
come event such as death, non-fatal MI, ST, and 
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Figure 2. Forest plot comparing the effects of laboratory versus experiential personalized antiplatelet therapy; CI — 
confidence interval.
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ischemic stroke. After 1 year, the results showed 
that only LTA, VerifyNow, and Plateletworks were 
significantly associated with the primary end point. 
However, the predictive accuracy of these tests 
were only modest. None of the tests provided ac-
curate prognostic information to identify low-risk 
patients at higher risk of bleeding following stent 
implantation.

The results of our meta-analysis revealed that 
the preventive effects of PAPT on MACEs were 
more evident during a short follow-up period, and 
the difference was statistically significant accord-
ing to the subgroup analysis, specially between  
1 month and 12 month subgroups (1 month:  
RR 0.06, 95% CI 0.01–0.29, p = 0.0006; 6 months: 
RR 0.44, 95% CI 0.14–1.42, p = 0.17; 12 months: 
RR 0.68, 95% CI 0.50–0.93, p = 0.01; heteroge-
neity among subgroups: Chi2 = 8.90, p = 0.01). 
During antiplatelet therapy in patients after coro-
nary stenting, the platelet function is constantly 
changing, suggesting that the PFT time window 
is potentially influencing PAPT benefits. During 
a short follow-up research, the proportion of this 
time window in follow-up period is higher, thus the 
benefits might be greater. However, this specula-
tion needs more short follow-up periods or a wider 
PFT time window to verify.

The subgroup analysis based on PAPT strat-
egy found that all methods could provide benefits 
except VerifyNow, although no statistical difference 
was found among all strategic results. Due to its 
mature detection method, VerifyNow results have 
high specificity and sensibility, thus the stated hy-

pothesis was that the above non-significant results 
were related with the VerifyNow cut-off value. It is 
generally accepted that ≥ 230 U can be considered 
as HTPR in the VerifyNow method, but the cut-off 
value remains controversial. Perhaps a lower cut-
off of 208 U is more suitable, as suggested in one 
meta-analysis [27] and ANTARCTIC study [24].

Genetic detection
Currently, several pharmacogenetic studies 

have found that gene loci plurality was related 
to cardiovascular events, which might predict 
the reactivity of antiplatelet medicine [28, 29]. 
Polymorphisms are present in many genes in-
cluding P2Y12, GP IIb/IIIa, GP Ia/IIa, GP Ib/IX/V, 
CYP2C19, CYP2C9, CYP3A4, CYP3A5, COX-1, 
COX-2 and ABCB1 [29, 30]. However, at present 
CYP2C19 gene polymorphism is the only one re-
lated to clopidogrel antiplatelet effect [31, 32]. The 
loss-of-function gene (CYP2C19*2, *3) carriers 
show low reaction to clopidogrel [33], while car-
riers of gain-of-function gene (CYP2C19*17) tend 
to show higher hemorrhage risk [34].

Clopidogrel and prasugrel are all thienopyri-
dine prodrugs, and all need CYP450 enzyme me-
tabolism to translate into the activated product. 
Clopidogrel is predominantly converted to an 
inactive derivative, with only a minor fraction 
(15%) undergoing the 2-sequential oxidation steps 
to generate the active metabolite [35]. CYP2C19, 
CYP3A4/5 and CYP1A2 are all important enzymes 
in this process. The metabolic efficiency of prasu-
grel is relatively higher, with more than 50% of 

Figure 3. Meta-regression to estimate the relationship between the benefits of personalized antiplatelet therapy and 
follow-up period; Coef. = 0.120, Std. Err. = 0.059, p = 0.068.
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Figure 4. Subgroup analysis based on personalized antiplatelet therapy (PAPT) strategy difference; HTPR — high 
on-treatment platelet reactivity; LTA — light transmission aggregometry; MEA — multiple electrode aggregometry; 
VASP — vasodilator stimulated phosphoprotein; CI — confidence interval.
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the drug becoming bioactivated, and primarily 
mediated by CYP3A4 and CYP2B6 enzymes [36].

Currently, the effect of CYP2C19 polymor-
phisms on clopidogrel therapy has been extensively 
studied. The earliest report on the correlation 
between CYP2C19*2 loss-of-function gene and 
clopidogrel low reaction dates back to 2006 [37]. 
More studies performed at later dates confirmed 
this correlation [38–40]. CYP2C19*17 gain-of-
-function gene is related to a reactivity increase 
of clopidogrel, but recent studies found that this 
correlation may be due to CYP2C19*2 linkage 
disequilibrium [41]. However, prasugrel is not 
significantly influenced by gene polymorphism, 
although some studies suggest an association [42, 
43]. Subgroup analysis of TRITON-TIMI 38 did 
not find significant associations between common 
CYP variants and active metabolite levels, platelet 
inhibition, or clinical CV event rates [44].

Clopidogrel and prasugrel are both substrates 
of p-glucoprotein efflux pump, which is encoded by 
the ABCB1 gene. Nevertheless, the correlation 

Table 3. Sensitivity analysis after omitting studies using VerifyNow.

Before omitting After omitting

Number of  
studies

RR (95% CI) p Number of 
studies

RR (95% CI) p

MACE 13 0.58 (0.42–0.80) 0.001 10 0.44 (0.32–0.59) < 0.00001

Cardiovascular death 13 0.77 (0.51–1.16) 0.21 10 0.60 (0.34–1.06) 0.08

Myocardial infarction 9 0.43 (0.21–0.88) 0.02 7 0.25 (0.11–0.54) 0.0005

Stroke 6 0.81 (0.39–1.66) 0.57 5 0.56 (0.20–1.57) 0.27

Stent thrombosis 13 0.60 (0.41–0.87) 0.008 10 0.44 (0.27–0.70) 0.0006

Bleeding 14 0.96 (0.81–1.13) 0.59 11 0.89 (0.65–1.21) 0.46

CI — confidence interval; MACE — major adverse cardiac events; RR — risk ratio

Table 2. Publication bias and sensitivity analysis.

Group Egger’s regression Trim and Fill method

Intercept (95% CI) P Iter-
ation

No.  
of  

Trim

RR (95% CI)

Before Trim and Fill After Trim and Fill

MACE –2.726 (–3.657 to –1.796) 0.000 2 0 0.58 (0.42–0.80) 0.58 (0.42–0.80)

Cardiovascular death –1.741 (–2.472 to –1.010) 0.000 2 0 0.77 (0.51–1.16) 0.77 (0.51–1.16)

Myocardial infarction –1.649 (–3.090 to –0.207) 0.030 2 0 0.43 (0.21–0.88) 0.43 (0.21–0.88)

Stroke –1.188 (–3.153 to 0.777) 0.169 2 0 0.81 (0.39–1.66) 0.81 (0.39–1.66)

Stent thrombosis –1.582 (–2.801 to –0.362) 0.016 2 0 0.60 (0.41–0.87) 0.60 (0.41–0.87)

Bleeding –0.246 (–1.155 to 0.663) 0.566 2 1 0.96 (0.81–1.13) 0.96 (0.82–1.12)

CI — confidence interval; MACE — major adverse cardiac events; RR — risk ratio

between ABCB1 polymorphism and clopidogrel 
pharmacodynamics is still unclear. One research 
paper found that patients with ABCB1 C3435T 
genotype had decreased clopidogrel absorption and 
circulating metabolite plasma levels [45], and in 
TRITON-TIMI 38 study, this gene polymorphism 
was significantly associated with an increased 
risk of CV death, MI, or stroke in patients under 
clopidogrel treatment [44]. However, the GIFT 
study revealed that ABCB1 polymorphism was 
not a significant factor in pharmacologic or clinical 
outcomes in patients treated with clopidogrel [46].

Multiple studies have investigated the in-
fluence of other gene polymorphisms, such as 
CYP2C9, CYP3A4, CYP3A5, P2Y12 on clopidogrel 
response variability, with results being mostly 
non-significant [36]. The GIFT study observed 
the correlation between 17 gene loci and platelet 
reactivity in more than 1,000 patients receiving 
standard or high-dose clopidogrel after PCI, and 
found that only CYP2C19*2 was associated with 
HTPR [46].
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Ticagrelor is a new non-thienopyridine anti-
platelet medicine, which in 2011 was approved for 
use in patients with ACS or a history of MI. Studies 
on ticagrelor pharmacogenetics are limited, and 
no significant association between its effects and 
certain genotypes have been found. The subgroup 
analysis of DISPERSE and DISPERSE-2 studies 
investigated the correlation between P2Y12, P2Y1, 
ITGB3 gene polymorphism and the effects of 

ticagrelor, and found no association [47]. Besides,  
RESPOND and ONSET/OFFSET studies found 
that the effect of ticagrelor is unrelated to CYP2C19 
and ABCB1 gene polymorphism [48]. The data 
of the PLATO trial were further investigated to 
search for potential genetic determinants, with at 
least 2 genome wide association study (GWAS) fail-
ing to find any significant effect of therapy associ-
ated polymorphisms on clinical outcomes [49, 50].
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Publication bias
The funnel plots are obviously asymmetric, 

which indicate a potential publication bias in this me-
ta-analysis. And Egger’s regression was performed 
because the interpretation of funnel plots is largely 
subjective. Although the absence of a significant cor-
relation or regression cannot be taken as evidence 
of symmetry, it confirmed publication bias from 
another perspective (Table 2). After that, a more 
interesting question would be what is its impact on 
these conclusions? It was identified from the results 
of trim and fill processes, which was performed in 
the sensitivity analysis. After the trim and fill adjust-
ment, 3 imputed studies are shown as filled circles, 
and imputed point estimate in log units is shown as  
a filled diamond at 0.156 (0.085, 0.227), corresponding  
to a OR of 1.169 (1.089, 1.254). The adjusted point 
estimate suggests a lower benefit than the original 
analysis. Thus, the adjusted estimate is fairly close 
to the original, and it was thought that they have 
similar substantive implications.

Conclusions

In conclusion, patients undergoing coronary 
stenting, PAPT could reduce the risk of MACEs, 
ST and MI. The preventive effect on MACEs was 
more significant in patients with HTPR. However, 
there was no significant increase in CV death, 
bleeding events and ischemic stroke.
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