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Abstract
Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure and heart trans-
plant. Mutations in 60 genes have been associated with DCM. Approximately 6% of all DCM 
cases are caused by mutations in the lamin A/C gene (LMNA). LMNA codes for type-V inter
mediate filaments that support the structure of the nuclear membrane and are involved in chro- 
matin structure and gene expression. Most LMNA mutations result in striated muscle diseases 
while the rest affects the adipose tissue, peripheral nervous system, multiple tissues or lead to 
progeroid syndromes/overlapping syndromes. Patients with LMNA mutations exhibit a variety 
of cellular and physiological phenotypes. This paper explores the current phenotypes observed in  
LMNA-caused DCM, the results and implications of the cellular and animal models of DCM and 
the prevailing theories on the pathogenesis of laminopathies. (Cardiol J 2014; 21, 4: 331–342)
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Introduction

Dilated cardiomyopathy (DCM) is a disease 
of the heart muscle characterized by the dilatation 
of the left or both ventricles and reduced systolic 
function in the absence of abnormal loading con-
ditions (hypertension, valve disease) or coronary 
artery disease (CAD) sufficient to cause global 
systolic impairment [1]. DCM is a significant he-
alth concern. It is the third most frequent cause 
of heart failure in the United States after CAD 
and hypertension [2]. Furthermore, DCM is also 
a primary indication for heart transplantation [2] 
and is marked by considerable morbidity as well 
as mortality. It is believed that 20% to 50% of 
idiopathic dilated cardiomyopathy (IDC) cases have 
familial causation [3, 4]. So far, more than 60 genes 
including the lamin A/C gene (LMNA) have been 
associated with DCM. The pattern of the disease 

inheritance is mostly autosomal dominant [4].  
Despite recent technological progress that makes 
gene screening both less time-consuming and cost-
-efficient, genetic screening currently reveals that 
only 30–35% of familial DCM follow the Mendelian 
model of disease inheritance [5], while the rema-
ining have a more complex multi-variant origin, 
which also encompasses the non-rare variants. 
In majority of the cases, incomplete age-related 
penetrance is observed [6–8]. It was reported that 
7% of LMNA mutation carriers exhibit cardiac-
-related phenotypes if under 20 years of age, 66% 
when carriers are between 20 and 39 years, 86% 
when carriers are between 40 and 59 years, and 
100% when carriers are over 60 years of age [6]. 
Another complicating factor that clouds the genetic 
diagnosis is the variability of expression within one 
phenotype. While some mutation carriers may de-
velop all the symptoms of the disease, other family 
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members carrying the mutation exhibit only some 
aspects of it and may remain with a subclinical form 
of the disease. The onset of DCM can vary greatly 
as can the severity and the rate of progression of 
the disease. The variability may also pertain to the 
range of phenotypes such as in the case of 960delT 
LMNA mutation, which presented with 3 differing 
phenotypes within 1 family: pure DCM, DCM with 
Emery-Dreifuss muscular dystrophy (EDMD)-like 
symptoms and DCM with limb girdle muscular 
dystrophy (LGMD)-like symptoms [9].

Mutations in LMNA were first identified in 
a family with EDMD in 1999 [10]. In the same 
year, the association between LMNA mutations 
and DCM was reported [11]. Since then, an ever-
-growing number of mutations in LMNA have been 
identified defining a group of diseases called lami-
nopathies. Laminopathies can be divided according 
to the observed phenotype. Most LMNA mutations 
have been associated with striated muscle diseases 
(79.1%), followed by adipose tissue (8.6%) and 
peripheral nervous tissue disorders (0.3%). 9.3% 
of LMNA mutations lead to progeroid syndromes 
while 10.9% cause overlapping syndromes with 
multiple tissue involvement [12].

Table 1 encompasses the most current list of 
LMNA mutations that lead to DCM, either isolated, 
with sole cardiac features or as a part of diagnosis of 
other, more complex conditions commonly affecting 
skeletal muscle such as EDMD or LGMD, but also 
encompassing other tissues which for instance 
leads to Charcot-Marie-Tooth disease, familial 
partial lipodystrophy, general lipodystrophy, hypo-
gonadism, Hutchinson-Gilford progeria syndrome 
or diabetes mellitus. Table 1 also summarizes the 
span of phenotypic traits reported to be associated 
with a given mutation. It was created by combining 
information from four main LMNA mutation data-
bases: the Human Intermediate Filament Database 

[13], the Leiden Muscular Dystrophy website 
(www.dmd.nl), the HGMD® Professional 2012.4, 
the Universal Mutation Database (www.umd.be/
LMNA/) and from the literature. We were able to 
find 165 LMNA mutations leading to DCM (Fig. 1).

LMNA gene encodes the A-type lamins which 
are involved in maintaining the structural integrity 
of the nucleus, chromatin organization and gene ex-
pression [14]. LMNA is composed of 12 exons and  
encodes lamin A and lamin C by alternative splicing 
in exon 10 [15]. Both lamin isoforms are identical 
for the first 566 amino acids after which lamin C 
contains a unique sequence of 5 basic amino acids 
while amino acids from 567 to 664 are unique to 
lamin A [15]. In addition, prelamin A contains  
a CaaX motif at the COOH-terminal, which under-
goes posttranslational modifications [15]. Lamins 
are divided into 3 domains: a short globular head, 
an a-helical rod and a globular tail. The rod domain 
comprises several coiled-coil domains separated 
by linker regions which are evolutionarily highly 
conserved (Fig. 1) [16].

Most lamin mutations leading to DCM are 
found in the head and rod domains covering more 
than half of lamin A and two-thirds of lamin C. 
DCM mutations are rarely found in the tail doma-
in which contains many phosphorylation sites as 
opposed to mutations linked to EDMD, familial 
partial lipodystrophy and Hutchinson-Gilford pro-
geria syndrome ([13]; Human Genome Mutation 
Database). However, hot spot(s) for DCM or other 
diseases affecting the striated muscle cannot be 
identified. Conversely, in adipose tissue defects, 
approximately 80% of cases carry a substitution 
of the p.Arg482 residue while 85% of mandibulo-
acral dysplasia cases are caused by a homozygous 
mutation at the p.527 residue and 77% of HGPS 
patients carry the c.1827C>T substitution within 
exon 11 [16].
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Figure 1. Protein map of lamin A and lamin C with currently known mutations of both transcripts plotted onto lamin A 
protein; NLS — nuclear localization signal. Dark shaded area at the C-terminal of lamin C represents lamin C-unique 
sequence.
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Studies of cellular phenotypes  
associated with LMNA mutations 

DCM patients with LMNA mutations display 
highly variable cardiomyocyte phenotype. A DCM 
patient encompassing exons 3–12 deletion showed 
diminished lamin A and C staining in the endomyo
cardial biopsy with discontinuous nuclear envelo-
pes and invasion of mitochondria into the nuclear 
space [17]. Another DCM patient carrying a LMNA 
mutation displayed dramatic morphological altera-
tions in approximately 30% of the cardiomyocyte’s 
nuclei including a complete loss of the nuclear 
envelope [18]. However, other mutation carriers 
did not present with such dramatic abnormalities 
[17, 18]. Nevertheless, cardiomyocytes from DCM 
patients with LMNA mutations usually display 
reduced lamin A and C in the nuclei with nuclear 
membrane damage such as focal disruptions, blebs 
and nuclear pore clustering [19, 20].

Skin fibroblasts isolated from patients with 
cardiac-or-skeletal-specific laminopathies most 
often had abnormal nuclear shape including blebs 
and herniation [21]. Lamin A and C distribution 
were affected in these cells and were either pre-
sent in a honeycomb pattern [21] or distributed 
unevenly along the inner nuclear lamina [22]. 
Some fibroblasts had lamin A and C aggregates 
close to the lamina which did not interact with 
emerin, DNA or RNA [23]. Patient tissue heart 
samples and skin fibroblasts provide a method to 
visualize the pathophysiology of disease-associated 
mutations; however, they are not easy to acquire. 
Currently, no specific therapy exists for patients 
with LMNA-related DCM. This has encouraged 
researchers to establish both mice and cellular 
models in an effort to elucidate the mechanisms 
leading to the disease phenotypes. Unraveling the 
molecular mechanisms might provide insights into 
the pathophysiology of this disease which could be 
translated into novel therapy in the future.

A Lmna null mouse based on genetrap tech-
nology has been developed [24]. The mouse is 
characterized by postnatal maturation defects of 
cardiac, muscle, and adipose tissues. Premature 
death occurred by 2–3 weeks of age. However, in 
this study, age matched heterozygous mice were 
indistinguishable from wild-type mice [24]. Only  
1 study reported Lmna+/– mice with 50% of normal 
cardiac lamin A/C levels and displaying cardiac 
abnormalities [25]. The LmnaH222P/H222P mice har-
bouring the EDMD mutation developed muscular 
dystrophy and DCM with atrio-ventricular con-
duction defect at adulthood and died by 13 months 

of age [26]. Male LmnaH222P/H222P mice developed  
significant left ventricular dilatation and by  
16 weeks of age had decreased ejection fraction [26].  
In another study, LmnaN195K/N195K mice harboring  
a DCM with conduction system disease mutation, 
died at an early age due to arrhythmia. Surprisingly, 
both LmnaH222P/+ and LmnaN195K/+ mice were found 
to have a phenotype and life expectancy similar 
to the wild-type [26, 27]. Cells derived from both 
Lmna–/– and LmnaN195K/N195K mice were observed 
to have damaged and misshapen nuclei, showed 
increased fragility under mechanical strain and 
impaired gene transcription [27–30].

Lamin A/C is found in almost all cells except 
in certain differentiated cells of hematopoietic ori-
gins [31]. Cellular models have shown that lamin 
A and C proteins are found distributed together in 
a homogeneous meshwork. However, wild type 
lamin A transfected alone has consistently shown 
to localize to the inner nuclear lamina with some 
nucleoplasmic localization. Conversely, lamin C has 
been shown to localize as intranuclear aggregate 
[18, 32–36]. Intranuclear lamin C has shown to be 
more mobile than intranuclear lamin A [36, 37]. 
Likewise, the lamin C only mouse model expressed 
lamin C at the inner nuclear lamina as established 
in wild type cells [35]; thus indicating the existence 
of compensatory mechanisms. Pugh et al. [32] stu-
died the incorporation of the lamin A and C in Swiss 
3T3 cells and found that the incorporation of lamin 
C into the lamina was made possible by lamin A.

In an attempt to identify deregulation in stria-
ted muscle specific laminopathies including DCM 
and EDMD, researches have been focused on 
skeletal muscle differentiations. Lamin A and C 
play a pivotal role in myoblast differentiation. In 
vitro, cells expressing disease-associated LMNA 
mutations displayed an inhibition of myoblast diffe-
rentiation [38] (F. Tesson personal communication) 
and myoblasts lacking lamin A and C expression 
showed decreased differentiation potential with 
downregulation of MyoD and pRb and upregulation 
of Myf5 [39]. These studies suggest that disruption 
of lamin A and C may weaken contractile tissues 
such as skeletal and cardiac muscle.

Lamin A and C also play a role in the regu-
lation of signaling cascades such as the Sumo 
pathway. Sumo pathway regulates a wide range 
of cellular processes through the attachment of 
small ubiquitin-related modifier (sumo) to various 
substrates. Sumo1 was found to be mislocalized 
in the presence of lamin A and C mutants both in 
vitro (C2C12 and Cos7 cells) and in vivo (prima-
ry myoblasts and myopathic muscle tissue from 
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the LmnaH222P/H222P mice) [18, 40]. In cell models, 
trapping of sumo1 correlated with an increased 
steady-state level of sumoylation. Ubc9, the E2 
conjugating enzyme of the Sumo pathway was 
also mislocalized to the mutant aggregates [40]. 
Lamin A has been shown to be covalently modified 
by Sumo 2 and 3 [41]. The disruption of a critical 
post-translational modifying process has the po-
tential to affect the post-translational regulation 
of tissue-specific sumoylated proteins which may 
lead to the tissue-specific symptoms observed in 
patients with various laminopathies [40].

Recent studies using induced pluripotent stem 
cells derived cardiomyocytes (iPSCS-CMs) from 
DCM patients with LMNA mutations showed ac-
celerated nuclear senescence and apoptosis under 
electrical stimulation. This study also showed 
that activation of stress response MEK1/ERK1/2 
pathway contributes to increased apoptosis in 
LMNAR225X/WT dermal fibroblasts after electrical sti-
mulation [42]. Moreover, this apoptotic effect could 
be attenuated by pharmacological blockade of the 
MEK1/ERK1/2 pathway. Study of gene expression 
profile showed that mouse models of laminopathies 
also displayed ERK pathway activation in heart 
muscle [43, 44]. Importantly, the pharmacological 
blockade of the ERK1/2 pathway prevented the de-
velopment of DCM in this model [45]. These studies 
have shed new light on MEK1 pathway as a potential 
therapeutic target in LMNA-associated DCM.

Conclusion: The mechanistic hypotheses

Until now, 3 main hypotheses have been pro-
posed to explain the mechanism of pathogenesis 
of laminopathies: the structural, the gene expres-
sion and the toxicity hypotheses. The structural 
hypothesis states that mutations within lamin 
A/C lead to disorganization of the proteinaceous 
meshwork, instability of the nuclear envelope and 
disorganization of chromatin, which in turn leads to 
the overall inability of the cell to properly function 
in contracting tissue environment such as striated 
muscles [46, 47]. Building on this hypothesis, 
recent studies identified repetitive disruptions 
of the nuclear envelope in the presence of lamin 
A/C mutations [17, 48]. These disruptions impai-
red protein distribution into cell compartments. 
Translocations of large amounts of protein into the 
cytoplasm could trigger aggresome formation or 
even induce cell apoptosis [48]. On the other hand, 
translocation of transcription factors into the cyto-
plasm might impair gene expression. The gene ex-
pression hypothesis is based on the regulatory role 

of lamin A/C in chromatin organization and DNA 
transcription. Mutated lamins might disrupt the 
protein meshwork through their interaction with 
other proteins of the nuclear envelope which may 
lead to epigenetic changes in the chromatin, which 
may then in turn disrupt various complex signaling 
pathways [49]. Lastly, the cell toxicity hypothesis 
proposes that mutated prelamin A may accumulate 
within patients’ nuclei to the point that they might 
become toxic to the cell and lead to development of 
the disease [50]. These hypotheses are likely to be 
not mutually exclusive and combining them might 
allow describing the mechanisms underlying the 
initiation and/or the development of laminopathies. 
Ultimately, a better understanding of the pathoge-
nesis of the disease may suggest novel strategies 
targeting the underlying molecular defects.
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Table 1. LMNA mutations associated with dilated cardiomyopathy from four databases — Human  
Intermediate Filament Database [13] (database updated 2014/01/15), Leiden Muscular Dystrophy  
website (www.dmd.nl; database updated 2014/01/05), HGMD® Professional 2014.4 (database updated 
2014/02/02) and the Universal Mutation Database (www.umd.be/LMNA/). 

Nucleotide change Protein change DCM phenotype range Domain Reference*

674bp deletion incl.  
start codon

Deletion of 5’ part 1o AVB, LBBB, AF, PVB,  
VT, HF, SCD

Head [1]

c.16C>T p.Gln6X 1o-2o AVB, AF, AFL,  
PAB, PVB, VT, HF, SCD

Head [2]

c.28_29insA p.Thr10AsnfsX31 1o-2o AVB, AF, PVB, MD Head [3]
c.31delC p.Arg11AlafsX85 (2o) AVB Head [4, 5]
c.46_49dup p.Ser18GlnfsX24 AVB Head [6]
c.48_51dupCAGC p.Ser18GlnfsX23 n/a Head [6]
c.65C>T p.Ser22Leu PVB, HF Head [7]
c.73C>T p.Arg25Cys CA, AF, PVB, MD, HF Head [8]
c.73C>G p.Arg25Gly 1o/3o AVB, TC, AF, PVB, PAB, 

LGMD, HF
Head [9]

c.78C>T p.Ile26Ile HF, LBBB, AF Head [10]
c.82C>T p.Arg28Trp AVB, AF, PM, FPLD, HF Head [4, 11]
c.94_96delAAG p.Lys32del LAFB, CA, AF, EDMD Head [12, 13]
c.99G>T p.Glu33Asp 1o AVB, Br, AF, CA, CMT2, MD, 

leuconychia
Head [14]

c.106C>T p.Gln36X 1o-2o AVB, VT Coil 1A [15]
c.134A>G p.Tyr45Cys AF, AFL, MD Coil 1A [16]
c.154C>G p.Leu52Val n/a Coil 1A [17]
c.155T>C p.Leu52Pro AVB, LBBB, RBBB, AF, PVB, HF Coil 1A [18]
c.158A>T p.Glu53Val AVB, AF, HF Coil 1A [19]
c.165delC p.Asn56ThrfsX40 2o AVB, HF Coil 1A [5]
c.169G>C p.Ala57Pro Atypical WS, hypogonadism, 

sloping shoulders
Coil 1A [20]

c.176T>G p.Leu59Arg CCD, hypogonadism,  
ovarian failure, MAD

Coil 1A [21, 22]

c.178C>G p.Arg60Gly 1o/3o AVB, LBBB, Br,  
AF, VA, DM, FPLD, PN,  

HF, SCD

Coil 1A [23–26]

c.184C>G p.Arg62Gly CCD, 1o AVB, AF, PM, FPLD, HF Coil 1A [11, 26]
c.203_208delAGGTGG p.Glu68_Val69del 3o AVB, EDMD(2) Coil 1A [4, 27]
c.215G>T p.Arg72Leu n/a Linker 1 [17]
c.232A>G p.Lys78Glu 1o AVB, VT, ICD Linker 1 [96]
c.244G>A p.Glu82Lys 1o-3o AVB, LBBB, AF, VF,  

SVT, HF
Coil 1B [28, 29]

c.254T>G p.Leu85Arg CCD, PM, AF, HF, SCD Coil 1B [23]
c.266G>T p.Arg89Leu 1o-3o AVB, AF, VT, MA,  

HF/AVB, AF, VT, EDMD, HF
Coil 1B [4, 5, 30–32]

c.274C>T p.Leu92Phe LBBB, AF, PVB, HF Coil 1B [33, 34]
c.289A>G p.Lys97Glu 1o/3o AVB, LBBB, PVB, HF Coil 1B [4, 5, 35]
c.302G>C p.Arg101Pro AF, HF / AVB, AF, PVB,  

VT, LGMD
Coil 1B [31] / [94]

c.331G>T p.Glu111X 3o AVB, PVB, HF Coil 1B [4, 5, 35]
c.348_349insG p.Lys117GlufsX10 AVB, AF, SCD Coil 1B [36]
c.356+1G>T n/a n/a Coil 1B [37]
c.357-1G>T n/a LBBB, AF, PVB, VT, VF, HF Coil 1B [4, 31, 34]
c.357C>T p.Arg119Arg CCD, PM, LGMD, HF Coil 1B [16]

c.367_369del p.Lys123del 1o-3o AVB, LBBB, PVB,  
VT, VF, MP, SCD

Coil 1B [38]

c.380_381ins24bp p.Ile128_Ala129ins
ArgValThrLeuIle- 

SerSerArg

CCD Coil 1B [34]

c.384ins24 p.Ile128delinsIleSer n/a Coil 1B [33]
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c.394G>C p.Ala132Pro 1o AVB, Br, AF, HF Coil 1B [39]
c.398G>T p.Arg133Leu CCD, LD Head [40]
c.405_425dup p.Asn142delinsLysLys 1o AVB, AF, VT, PVB Coil 1B [41]
c.425_426insGGCACTG 
GAGGCTCTGCTGAA

p.Leu141_Asn142insLys
AspLeuAspAlaLeuLeu

1o AVB, AF, PVB, VT, HF Coil 1B [41]

c.427T>C p.Ser143Pro 1o-3o AVB, LBBB, LAFB, SSS,  
Br, AF, PVB, VF, VT, HF

Coil 1B [39, 42]

c.481G>A p.Glu161Lys AVB, LBBB, Br, AF, PVB,  
LAFB, VT, HF

Coil 1B [4, 3, 19,  
34, 43]

c.497G>C p.Arg166Pro AVB, LBBB, AF, VT, HF Coil 1B [31, 44]
c.514-1G>A n/a VT, VF Coil 1B [4]
c.548T>C p.Leu183Pro AVB Coil 1B [4]
c.556G>A p.Glu186Lys CCD, HF Coil 1B [19]
c.565C>T p.Arg189Trp PVB Coil 1B [45]
c.568C>T p.Arg190Trp 1o AVB, RBBB, Br, LAFB, AF, 

AFL, PVB, HF
Coil 1B [4, 5, 7, 19, 35, 

39, 46, 47]
c.569G>A p.Arg190Gln 1o-3o AVB, Br, AF, AFL,  

VT, HF
Coil 1B [31, 43]

c.575A>G p.Asp192Gly 1o AVB, LAFB, HF Coil 1B [46, 48, 49]
c.575A>T p.Asp192Val LBBB, FLPD, HF Coil 1B [26]
c.585C>G p.Asn195Lys 1o-3o AVB, Br, AF, HF, SCD Coil 1B [8, 23]
c.585C>A p.Asn195Lys 1o, 3o AVB, AF, HF, SCD Coil 1B [8]
c.607G>A p.Glu203Lys 1o AVB, LBBB, RBBB, HF Coil 1B [50]
c.608A>G p.Glu203Gly 1o-2o AVB, AF, HF, SCD Coil 1B [23]
c.608A>T p.Glu203Val 2o AVB, Br, SWMA, HF Coil 1B [23, 43]
c.622_624delAAG p.Lys208del 1o AVB, PVB, VT, LGMD Coil 1B [8]
c.629T>G p.Ile210Ser AF, HF Coil 1B [31, 51]
c.640-10A>G n/a 1o-3o AVB, LBBB, RBBB,  

AF, VT, HF
Coil 1B [52]

c.644T>C p.Leu215Pro 1o-2o AVB, SSS, Br, LBBB, AF, 
AFL, SVT, VT, PVB, SCD, HF

Coil 1B [53]

c.656A>C p.Lys219Thr (3o) AVB Linker 2 [4, 43]
c.657G>C p.Lys219Asn 1o AVB, VT, PM Linker 2 [54]
c.673C>T p.Arg225X (1o) AVB, Br, AF, LVE, PVB, SCD Linker 2 [8, 44, 50]
c.676C>G p.Leu226Val n/a Linker 2 [37]
c.694G>C p.Gly232Arg AVB, RBBB, PVB, EDMD Linker 2 [18]
c.700C>T p.Gln234X 2o AVB, Br, HF Linker 2 [31]
c.736C>T p.Gln246X AVB Coil 2 [4]
c.746G>A p.Arg249Gln AVB, PVB, EDMD or LGMD(1B) Coil 2 [18]
c.767T>G p.Val256lGly AVB Coil 2 [55]
c.775T>C p.Tyr259His AVB, AF, VT Coil 2 [44]
c.780G>C p.Lys260Asn AVB, SSS, ASS, HF Coil 2 [4, 56]
c.781_783del3ins18 p.Lys261delins6 AVB, LBBB, AF,  

PVC, EDMD(2)
Coil 2 [18]

c.799T>C p.Tyr267His CCD, SCD Coil 2 [57]
c.800A>G p.Tyr267Cys AVB, TC, EDMD(2) Coil 2 [4, 58]
c.810G>A p.Lys270Lys CCD, AF, PM, EDMD, LGMD Coil 2 [16]
c.811-3C>T n/a n/a Coil 2 [37]
c.812T>C p.Leu271Pro AF, Br, SVT, VT, EDMD, HF Coil 2 [16, 59]
c.815_818delACA 
AinsCCAGAC

p.Asp272AlafsX208 AVB, AF, VT Coil 2 [44]

c.832G>A p.Ala278Thr AVB, AF, VF, SVT, PM, PVB Coil 2 [60]
c.855delG p.Ala287LeufsX191 AF, ASS, LGMD Coil 2 [58]
c.859insC p.Ala287fs AF Coil 2 [34]
c.883T>C p.Ser295Pro CCD, MD Coil 2 [16]
c.906_907delCT p.Ser303CysfsX27 AVB, PM, HF, Br, PAB, PVB, 

CCD, SVA, AF, SCD
Coil 2 [95]
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c.908_909delCT p.Ser303CysfsX26 1o AVB, Br, SSS, AF / 1o-3o AVB, 
AF, PVB, VT, LGMD, HF

Coil 2 [61, 62]

c.936G>C p.Gln312His AVB, AF, CCD, HF Coil 2 [63]
c.976T>A p.Ser326Thr VT, AVB, CCD, XL-EDMD,  

MP, PM
Coil 2 [97]

c.IVS5+1G>T 
(c.936+1G>T)

n/a 1o-2o AVB, VT, PM Coil 2 [4, 56, 64]

c.937-11C>G p.Leu313GlyfsX31 1o-3o AVB, LGMD(1B), VT, AF Coil 2 [65]
c.949G>A p.Glu317Lys 1o/3o AVB, AFL, LBBB, HF Coil 2 [4, 5, 35, 34]
c.952G>A p.Ala318Thr TC, PVB, HF Coil 2 [31]
c.958delC p.Leu320fs n/a Coil 2 [17]
c.959delT p.Leu320fsX160 2o-3o AVB, LBBB, AF, VT, SVT, 

PVB, LGMD, EDMD, HF, SCD
Coil 2 [66, 67]

c.961C>T p.Arg321X 1o AVB, RBBB, AF, VT, HF Coil 2 [68, 69]
c.[992G>A; =]+[=; 
1039G>A]

p.[Arg331Glu; =]+[=; 
Glu347Lys]

AF, PM Coil 2 [58]

c.992G>C p.Arg331Pro AVB, PM, LGMD Coil 2 [58]
c.992G>A p.Arg331Gln 1o AVB, AFL, VT, HF Coil 2 [69]
c.1003C>T p.Arg335Trp 3o AVB, RBBB, SSS, AF, VT Coil 2 [17, 70]
c.1004G>A p.Arg335Gln n/a Coil 2 [37]
c.1039G>A p.Glu347Lys AF, PM, SCD Coil 2 [13, 71]
c.1044G>T p.Met348Ile EDMD, PM, CCD Coil 2 [72]
c.1045C>T p.Arg349Trp CCD, SVA, MD, HF, SCD Coil 2 [8]
c.1046G>T p.Arg349Leu AF, HF Coil 2 [73]
c.1048G>C p.Ala350Pro AVB, LBBB, AF, PVB Coil 2 [18]
c.1057C>A p.Gln353Lys CA, MP, HF Coil 2 [48]
c.1063C>T p.Gln355X 2o AVB, AF, VT, HF Coil 2 [7, 69]
c.1069G>C p.Asp357His AVB, VT Coil 2 [74]
c.1070A>C p.Asp357Ala 2o AVB, Br, AF, VES, VT,  

VF, HF, SCD
Coil 2 [70]

c.1072G>T p.Glu358X 1o-2o AVB, VT Coil 2 [75]
c.1085_1085delT p.Leu363TrpfsX117 1o-2o AVB, AF, VT, HF Coil 2 [39]

c.1102_1130dupGCCCTG
GACATGGAGATCCACGC
CTACCG

p.Lys378ProfsX112 LBBB, VT, LGMD, HF Coil 2 [76]

c.1111_1125del15 p.Met371_Ala375del n/a Coil 2 [17]
c.1114delG p.Glu372ArgfsX107 1o AVB, Br, AF, HF Coil 2 [31]
c.1129C>T p.Arg377Cys LGMD, HF Coil 2 [77]
c.1130G>A p.Arg377His 1o-3o AVB, LBBB, RBBB,  

AF, PVB, VT, VF, LGMD,  
EDMD, HF, SCD

Coil 2 [3, 8, 18, 30,  
41, 78]

c.1130G>T p.Arg377Leu (2o) AVB, Br, SSS, AF, AFL, 
ASS, ATC, VT, LGMD(1B),  

EDMD, HF, SCD

Coil 2 [4, 8, 79, 80]

c.1157G>C p.Arg386Thr FPLD, CCD Tail [81]
c.1157+1G>A n/a VT, VF Tail [4]
c.1157+1G>T p.Arg386SerfsX21 VES, VF, HF Tail [70]
c.1163G>A p.Arg388His Br, PVB, HF, SCD Tail [31]
c.1189C>T p.Arg397Cys n/a Tail [37]
c.1195C>T p.Arg399Cys HF Tail [31]
c.1197_1240del44 p.Gly400Argfs*11 AVB, SSS Tail [55]
c.1292C>G p.Ser431*_ AVB Tail [55]

c.1294C>T p.Gln432X 3o AVB, LBBB, RBBB, AF, VT, HF Tail [69]
c.1303C>T p.Arg435Cys HF Tail [13]
c.1307_1308insGCAC p.Ser437HisfsX1 2o AVB, Br, TC, AF,  

PVB, HF, SCD
Tail [31]

Æ
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c.1318G>A p.Val440Met LAFB, VES Tail [69]
c.1370delA p.Lys457SerfsX21 AF, LGMD Tail [58]
c.1380+1G>A n/a (1o) AVB, AF, VF, HF Tail [8, 34]
c.1397_1397delA p.Asn466IlefsX14 1o AVB, LBBB, Br, AF,  

VF, VT, HF, SCD
Tail [41, 82]

c.1412G>A p.Arg471His AF, VT, HF Tail [31]
c.1424_1425insAGA p.Gly474_Asp475insGlu HF, ICD Tail [31]
c.1443C>G p.Tyr481X 2o AVB, RBBB, SVT, VT, HF Tail [46, 48, 49]
c.1489-1G>T p. Ile497-Glu536del 2o AVB, Br, AF, AFL,  

VT, EDMD
Tail [70]

c.1492T>A p.Trp498Arg AVB, EDMD(2) Tail [4]
c.1493_1493delG p.Ala499LeufsX47 AF, VT, HF Tail [39]
c.1496delC p.Ala499Val 1o-2o AVB, RBBB, Br,  

ATC, ASS, AN
Tail [83]

c.1512_1513insAG p.Thr505ArgfsX44 1o AVB, AF, PVB, HF, SCD Tail [8]
c.1526_1527insC p.Thr510TyrfsX42 1o AVB / AVB, EDMD(2) Tail [4] / [84]
c.1549C>T p.Gln517X 3o AVB, AF, EDMD,  

VF, SCD
Tail [70]

c.1560G>A p.Trp520X 2o AVB, LBBB, Br Tail [70]
c.1567G>A p.Gly523Arg LBBB Tail [33, 34]
c.1579_1580insCTGC p.Arg527ProfsX26 1o-2o AVB, LBBB, LAFB, HF Tail [4, 5, 35]
c.1583C>T p.Thr528Met 1o-3o AVB, Br, AF, SVA Tail [10]
c.1608+1G>T n/a n/a Tail [37]
c.IVS9-3C>G  
(c.1609-3C>G)

Loss of exon 10 3o AVB, Br, PM, LGMD(1B) Tail [85]

c.1621C>T p.Arg541Cys LBBB, VT, VF, PVB,  
fibrosis, SWMA, SCD

Tail [86–88]

c.1621C>A p.Arg541Ser VT, HF / LGMD(1B), HF Tail [16] / [46,  
39, 48]

c.1621C>G p.Arg541Gly IVB, LBBB, Br, SVA,  
PVB, VA, TC

Tail [89]

c.1622G>A p.Arg541His AVB, AF, PVB Tail [18]
c.1622G>C p.Arg541Pro PVB, VT, HF Tail [8]
c.1711C>A p.Arg571Ser 1o-3o AVB, Br, AF Tail [23]
c.1713C>A p.Ser571Arg 2o, 3o AVB, PM, HF, AF Tail [23]
c.1714insCTGC p.Ser572LeufsX8 1o, 2o AVB, PM, LBBB Tail [35]
c.1718C>T p.Ser573Leu AVB, VT Tail [4, 30]
c.1904G>A p.Gly645Asp HF Tail [90]
c.1930C>T p.Arg644Cys AVB, AF, VT, HF / LGMD(1B),  

HF, SCD
Tail [4, 43,  

69] / [91]
c.1960C>T p.Arg654X AVB, LBBB, SSS, AF,  

VT, HF, SCD
Tail [31]

c.1964_1965insG p.Thr655fsX49 PM, VT, MH, POS, HF, SCD Tail [92]
c.[1699 to 183_1699–
160inv24; 568_1699–
184del; 1699 to 
159_1995+6997del]

Double deletion with break 
points in exon 3, intron 10, 

downstream of gene

1o-3o AVB, AF, AFL,  
Br, VA, SCD

Coil/Tail [93]

Deletion exons 3-12 Deletion > 4,704 bp VT, HF Coil/Tail [48]

1o, 2o, 3o — atrio-ventricular block degree, in parenthesis when degree specified only in some studies; AF — atrial fibrillation; AFL — atrial  
flutter; AN — axonal neuropathy; ASS — atrial standstill; ATC — atrial tachycardia; AVB — atrio-ventricular block; Br — bradycardia;  
CA — cardiac abnormalities; CCD — cardiac conduction disease; CMT2 — Charcot-Marie-Tooth disease; DCM — dilated cardiomyopathy; 
DM — diabetes mellitus; EDMD(2) — Emery-Dreifuss muscular dystrophy (type 2); FPLD — familial partial lipodystrophy; HF — heart failure; 
IVB — intra-ventricular block; ICD — implantable cardiac defibrillator; LAFB — left anterior fascicular block; LBBB — left bundle branch block; 
LGMD(1B) — limb girdle muscular dystrophy (type 1B); LVE — left ventricular exosystoly; MA — muscular atrophy; MAD — mandibuloacral 
dysplasia; MD — muscular dystrophy; MH — muscular hypertrophy; MP — myopathy; n/a — not available; PAB — premature atrial beats; 
PM — pacemaker implantation; PN — peripheral neuropathy; POS — polycystic ovary syndrome; PVB — premature ventricular beats;  
RBBB — right bundle branch block; SCD — sudden cardiac death; SSS — sick sinus syndrome; SVA — supraventricular arrhythmia;  
SVT — supraventricular tachycardia; SWMA — segmental wall motion abnormalities; TC — tachycardia; VA — ventricular arrhythmia;  
VES — ventricular extra systoles; VF — ventricular fibrillation; VT — ventricular tachycardia; LD — lipodystrophy; WS — Werner syndrome; 
“/” used to separate differing phenotypes; *References are listed in “Supplement 1”
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