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The first reports on 
deriving pressure loss 
from anatomy by simu-
lating coronary flow date 
back 40 years [1]. The 
pursuit of anatomy-based 
coronary physiology as-
sessment and its clini-
cal translation has since 
been accelerated by Paul 
Morris et al. (2013) and 
Shengxian Tu et al. (2014) 
who computed fractional flow reserve (FFR) by 
applying computational fluid dynamics (CFD) 
simulation to three-dimensional (3D) coronary 
artery geometries extracted from two angiographic 
projections [2–4], and by Michail Papafaklis et al. 
(2014) who developed the virtual functional assess-
ment index (vFAI) to predict flow-limiting coronary 
stenosis [5].

Avoidance of a pressure wire or microcath-
eter insertion into the coronary tree, lowers cost, 
procedural time and patient discomfort — in cases 
where a hyperemic agent is used — well justify 
the development of new software for wire-free 3D 
quantitative coronary angiography (QCA)-based 
FFR estimation, and the efforts being made to bring 
such modalities into clinical practice. At present, 
three validated vendor specific technologies have 
the promise to substantially improve the clinical 
adoption of physiological coronary lesion assess-
ment in the routine practice of catheterization 

laboratory: quantitative 
flow ratio (QFR, Angio 
XA 3D software, Medis 
Medical Imaging System 
bv, the Netherlands and 
AngioPlus, Pulse Medi-
cal Imaging Technology, 
Shanghai, China), vessel 
fractional flow reserve 
(vFFR, CAAS Worksta-
tion, Pie Medical Imaging, 
Maastricht, the Nether-

lands), and FFRangio (FFRangio system, CathWorks, 
Ltd, Kfar-Saba, Israel) [6–9]. Attempts of predicting 
pulsatile vascular physiology on the basis of steady 
flow assumptions in CFD analyses have resulted 
in the development of mathematical methods 
to accelerate computation of angiography-based 
FFR estimation [10]. Concurrently, computed 
tomography coronary angiography (CTCA)-based 
FFR (FFRCT) has also shown high correlation with 
pressure wire-based FFR and a high accuracy in 
detecting ischemia causing lesions [11], avoiding 
both coronary instrumentation and invasive angi-
ography (Fig. 1).

3D-QCA-derived FFR

QFR, vFFR and FFRangio demonstrated a signif-
icantly higher diagnostic accuracy, compared with 
traditional two-dimensional- or 3D-QCA [7–9]. 
While the requirement of minimum two angio-
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graphic projections with views of at least 25° apart, 
brisk contrast injection and possibly minimized 
vessel overlap resulted in non-negligible exclusion 
rates in retrospectively analyzed cohorts to date 
[8, 12, 13], the feasibility of angiography-based 
FFR computation was relatively high in prospec-
tively enrolled cohorts with optimized protocols 
for angiography acquisition [7, 8, 14]. Of note, none 
of the three technologies has demonstrated the 
safety or non-inferiority of angio-based FFR ver-
sus the pressure-wire based FFR/iFR with regard 
to impact on clinical endpoints to date. However, 
large prospective studies are ongoing with specific 
focus on clinical follow-up and prespecified angio
graphy acquisition protocols: FAVOR III China 

(ClinicalTrial.gov: NCT03656848) and FAVOR III 
Europe-Japan (ClinicalTrials.gov: NCT03729739) 
will reveal whether QFR-guided revascularization 
may improve outcomes of patients undergoing 
percutaneous coronary intervention (PCI), as com-
pared to subjects treated, respectively, based solely 
on angiography or angiography and pressure-wire 
based FFR (Fig. 1). 

PCI optimization: IVUS-FFR,  
OCT-FFR and post-PCI 3D-QCA-FFR 

Another promising multimodality approach 
to imaging of the coronary artery is  derived from 
3D artery models of angiography and grey-scale 

Figure 1. Imaging-based coronary physiology assessment; A. Graphic summary of imaging-based modalities for 
functional evaluation of coronary stenosis; B, C. Examples of quantitative coronary angiography- and computed 
coronary tomography angiography-based fractional flow reserve estimation; D. Computational fluid dynamics for wall 
shear stress computation; qFR — quantitative flow ratio; vFFR — vessel fractional flow reserve; FFRangio — fractional 
flow reserve derived from angiography; vFAI — virtual functional assessment index; FFR — fractional flow reserve; 
IVUS — intravascular ultrasound; OCT — optical coherence tomography; RCA — right coronary artery. Adapted with 
permissions from: Asano T et al. EuroIntervention. 2018; 14: 570–579; Modolo R et al. Ann Cardiothorac Surg. 2018; 
7: 470–482; Thondapu V et al. Eur Heart J. 2018; 7: 1602–1609.
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intravascular ultrasound (IVUS) — a concept ini-
tially proposed in 2000 by Slager et al. [15], and 
more recently pursued by the groups of Seike and 
Bezerra, amongst others, who reported a correla-
tion between IVUS-derived FFR and pressure-wire 
based FFR, with an area under the curve reaching 
0.93. In addition, optical coherent tomography 
(OCT) can be utilized for FFR estimation (OCT-
-derived FFR [OFR]), with a high diagnostic accu-
racy, as compared with conventional FFR values 
[16, 17]. In a recent study by Huang et al. [17] 
in unselected patients with coronary syndrome, 
OFR was found superior to QFR in determining 
physiological significance of coronary stenosis 
and its diagnostic performance was not influenced 
by the presence of prior myocardial infarction or 
implanted stents. Both IVUS- and OCT-based FFR 
indices could serve as an additional means of final 
PCI result optimization, in particular when the 
procedure is already being guided with either of 
two imaging modalities. One of the major hurdles 
in reliable IVUS-FFR estimation related to stenosis 
length — subject to considerable inter-observer 
variability as reported in some prior studies — has 
been recently addressed by Kashiyama et al., who 
showed that stenosis length determined based 
on the area stenosis, rather than plaque burden, 
provides higher diagnostic accuracy of IVUS-FFR 
for physiologic ischemia detection (presented at 
the American Heart Association 2019 Conference, 
Philadelphia, US). However, clinical efficacy of in-
travascular imaging-based indices still remains to 
be confirmed in larger studies powered to evaluate 
clinical outcomes.

Interestingly, 3D-QCA-based functional in-
dices computed using the angiograms acquired 
directly post PCI proved useful for stratification 
of risk after a successful procedure [18], including 
patients treated for de novo 3-vessel disease [19]; 
risk of vessel-oriented composite endpoint (vessel-
-related cardiac death, vessel-related myocardial 
infarction, and target vessel revascularization) 
was found to be 3-fold higher when post-PCI QFR 
was ≤ 0.89 [18] or ≤ 0.90 [19]. Consistent obser-
vations were also reported at the Transcatheter 
Cardiovascular Therapeutics 2019 (TCT 2019) for 
post PCI vFFR, with vessels presenting post-PCI 
vFFR values > 0.9 having lower risk of target 
vessel revascularization at 1 year, post procedure, 
as compared to vessels with post PCI vFFR ≤ 0.9 
(1.8% vs. 4.2%, p < 0.05) (Masdjedi et al. presented 
at TCT 2019).

CTCA-based FFR (FFRCT)

Assessment of functional lesion severity based 
on CFD extends the CTCA capacities for lumen ob-
struction and plaque characteristics evaluation [11, 
20, 21]. Recently, FFRCT has demonstrated similar 
ability to predict invasive FFR values as classic 
single photon emission computed tomography, be-
ing, however, inferior to cardiac positron emission 
tomography (Fig. 1) [22]. It has also proved safe 
with deferring lesions with FFRCT values above 
0.8, and could efficiently guide revascularization 
strategy with coronary artery bypass grafting or 
PCI, as was shown in the prospective SYNTAX III 
Revolution trial [20, 23]. While the role of FFRCT 
in patient screening, detailed assessment of coro-
nary lesion complexity and procedural planning is 
increasingly recognized, relatively long computa-
tion times, costs and a need for telemedicine have 
to be considered. Although in the United Kingdom 
the HeartFlow FFRCT analysis has been selected 
for reimbursement as part of the Innovation and 
Technology Payment (ITP) program, lack of reim-
bursement in majority of the countries nowadays 
represents non-negligible obstacle in rendering 
this technology more widely and clinically adoptable.

Future directions 

In the recent ISCHEMIA (International Study 
of Comparative Health Effectiveness With Medi-
cal and Invasive Approaches) trial — presented 
by Judith S. Hochman at the American Heart As-
sociation Annual Scientific Sessions (AHA 2019) 
— routine invasive therapy failed to reduce major 
adverse ischemic events over a median of 3.3 years, 
compared with optimal medical therapy among 
chronic coronary syndrome patients with moderate 
to severe ischemia on noninvasive stress testing. 
There was also no benefit from invasive therapy 
regarding all-cause mortality or cardiovascular 
mortality/myocardial infarction. As such, additional 
diagnostic measures including more ‘subtle’ param-
eters such as frictional force exerted on the vessel 
wall by circulating blood, namely wall shear stress 
(WSS) — that currently can also be estimated in 
vivo based on either cine-angiography or CTCA 
scans — may prove efficient in improving risk strat-
ification in the near future. It is conceivable that 
imaging modalities enriched with WSS information 
could facilitate appropriate identification of patients 
with signs of ischemia by traditional non-invasive 
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tests, in whom interventional treatment could pre-
vent hard clinical endpoints beyond relieving the 
angina symptoms. Indeed, the CFD sub analysis 
of the FAME II (Fractional Flow Reserve Versus 
Angiography for Multivessel Evaluation II) trial 
showed, that among patients with chronic coro-
nary syndromes and hemodynamically significant 
lesions, higher WSS in the proximal segments of 
atherosclerotic lesions was predictive of myocardial 
infarction and had incremental prognostic value over 
FFR [24]. Recent standardization of WSS metrics 
and computation protocols [25] paves the way for 
further enhancing the current state-of-the-art of 
functional lesion assessment, potentially optimiz-
ing treatment decisions and improving the results 
of physiology-based coronary revascularizations in 
the ‘post ICHEMIA trial’ era. Finally, it has to be 
noted that both angio- and CTCA-derived FFR in-
dices are restricted to epicardial arteries and imply  
a maximal relaxation of the vascular tone. Therefore, 
in future, comprehensive multimodality diagnostics 
combining anatomic and physiologic approaches will 
also need to better account for the vasomotion and 
coronary microvasculature assessment.
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