First-in-man intravascular ultrasound guidance of percutaneous pulmonary valve implantation
Łukasz Kalińczuk, Katarzyna Biernacka, Witold Rużyłło, Marcin Demkow
Institute of Cardiology, Warsaw, Poland

A 25-year-old male with dextro-transposition of the great arteries underwent a Rastelli procedure at the age of four. Nineteen years later, he underwent surgical pulmonary homograft replacement (ø25-mm) plus proximal insertion of a ø26-mm conduit. One year later, echocardiography showed distal pulmonary homograft stenosis with normal pulmonary valve function. A bare-metal 36-mm stent (Ev3 IntraStent LD Max, Plymouth, MN, USA) was deployed (@6 atm) on a 24-mm balloon-in-balloon catheter (BIB, NuMED, Hopkinton, NY, USA) at the distal anastomosis site and post-dilated (@8-atm) with an 16-mm ultra-high-pressure balloon (Mullin-X™, NuMED, Hopkinton). Right ventricle pressure remained 84/0–21 mmHg with an angiographic 34% diameter stenosis (DS) at the proximal stent margin (Fig. 1A). Computed tomography revealed the homograft minimal lumen site dimensions of 7.2 × 15.4-mm (65% DS), identified at the proximal stent edge near the pulmonary annulus (Fig. 1B). The homograft outer diameters were of 18.9 × 23.7-mm (Fig. 1B). Intravascular ultrasound (IVUS) with Visions® PV.035 Digital Catheter (Philips) revealed corresponding minimal lumen cross-sectional area (MLA) of 0.97-cm² (11.5 × 12.3-mm) with homograft outer dimension of 17.9 × 24.9-mm (Fig. 1C). The Melody™ transcatheter pulmonary valve (Medtronic, Minneapolis, Minnesota, USA) was deployed on a 22-mm balloon after landing-zone pre-stenting with IntraStent on 20-mm BIB (overlapping the first stent distal margin). Despite a good angiographic result (Fig. 1D), IVUS MLA was 1.58-cm² (15.0 × 15.6-mm); thus, it was post-dilated using a 20-mm (@6-atm) and 22-mm Mullins-X™ balloon (@11-atm). Final MLA was of 3.16-cm² (19.5 × 20.2-mm; 0% DS), with a substantial increase in total homograft dimension and right ventricle pressure drop to 37/0–4 mmHg (Fig. 1E).

The study complied with the Declaration of Helsinki, the patient signed informed consent, and the study was approved by the local ethics committee.

Funding: This work was supported by a research grant (2.4/VI/18) founded by the Institute of Cardiology in Warsaw (Poland).

Conflict of interest: Marcin Demkow is proctoring for Medtronic. All the other authors have no conflicts of interest with regard to this manuscript.
Figure 1. Corresponding angiography, computed tomography and intravascular ultrasound (IVUS) images; **A.** Angiography of the pulmonary homograft with indicated lumen diameters (white thin two-headed arrows) measured: distally [1]; at the minimal lumen site [3]; and proximally [4]; **B.** Computed tomography cross-sections perpendicular to the homograft long lumen axis obtained: distally (with indicated minimal and maximal in-stent diameters) [1]; at the site of homograft minimal lumen cross-sectional area (with its outer dimension marked with bold white arrows and a calcium deposit indicated with a black arrow) [3]; and within the conduit length (arrows indicate the relevant lumen diameters); **C.** IVUS recorded at the site of homograft minimal lumen cross-sectional area, with indicated minimal and maximal lumen diameters (white thin two-headed arrows) and its outer dimension (bold white arrows) [3]. The distal pulmonary artery and the conduit lumen diameters were also measured; **D.** Serial angiographies recorded at baseline, post pre-stenting and Melody™ deployment, and finally after the two sequential post-dilations; **E.** Serial IVUS images of the corresponding homograft sites, with measured: baseline minimal and maximal in-stent diameters (white thin two-headed arrows) distally [1]; the homograft outer dimensions assessed at the site of its minimal lumen cross-sectional area at baseline and post-procedure (bold white arrows) [3]; final in-valve minimal lumen cross-sectional area (white thin two-headed arrows) [3].