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Abstract
Background: Evaluation of standard echocardiographic examination with artificial intelligence may 
help in the diagnosis of myocardial viability and function recovery after acute coronary syndrome. 
Methods: Sixty-one consecutive patients with acute coronary syndrome were enrolled in the present 
study (43 men, mean age 61 ± 9 years). All patients underwent percutaneous coronary intervention 
(PCI). 533 segments of the heart echo images were used. After 12 ± 1 months of follow-up, patients had 
an echocardiographic evaluation. After PCI each patient underwent cardiac magnetic resonance (CMR) 
with late enhancement and low-dose dobutamine echocardiographic examination. For texture analysis, 
custom software was used (MaZda 5.20, Institute of Electronics).Linear and non-linear (neural net-
work) discriminative analyses were performed to identify the optimal analytic method correlating with 
CMR regarding the necrosis extent and viability prediction after follow-up. Texture parameters were 
analyzed using machine learning techniques: Artificial Neural Networks, Namely Multilayer Percep-
tron, Nonlinear Discriminant Analysis, Support Vector Machine, and Adaboost algorithm.  
Results: The mean concordance between the CMR definition of viability and three classification mod-
els in Artificial Neural Networks varied from 42% to 76%. Echo-based detection of non-viable tissue 
was more sensitive in the segments with the highest relative transmural scar thickness: 51–75% and 
76–99%. The best results have been obtained for images with contrast for red and grey components 
(74% of proper classification). In dobutamine echocardiography, the results of appropriate prediction 
were 67% for monochromatic images. 
Conclusions: Detection and semi-quantification of scar transmurality are feasible in echocardiograph-
ic images analyzed with artificial intelligence. Selected analytic methods yielded similar accuracy, and 
contrast enhancement contributed to the prediction accuracy of myocardial viability after myocardial 
infarction in 12 months of follow-up. (Cardiol J 2024; 31, 5: 699–707)
Keywords: neural network, artificial intelligence, myocardial infarction, myocardial  
viability, myocardial texture
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Introduction

In a large group of patients with ischemic heart 
disease, the evaluation of myocardial viability is 
crucial for clinical and therapeutic decisions. In 
the last European Society of Cardiology guidelines 
for the revascularization of the heart muscle, the 
confirmation of myocardial viability has a class IIb 
level of recommendations for the qualification for 
coronary artery by-pass graft or percutaneous coro-
nary intervention (PCI) [1]. In selected groups of 
patients like those with low ejection fraction < 30% 
and severe mitral regurgitation, the evaluation of 
myocardial viability has even an indication of level 
IIa [1]. In everyday clinical practice for the myocar-
dial viability assessment, we use stress echo with 
dobutamine, single-photon emission computed 
tomography, cardiac magnetic resonance (CMR), 
and positron emission tomography. According to 
the cost-effectiveness, the most commonly used is 
the stress echo with dobutamine. Stress echo has 
some side effects, is observer-dependent, and the 
possibility of diagnosing myocardial viability with 
regular echocardiographic examination may be 
very appealing. Echocardiography can be extended 
to assess myocardial perfusion in rest and stress 
conditions by administration of contrast material 
which improves the quality of images and allows 
for the evaluation of tissue properties [2]. 

The future of medicine is to individualize 
the therapy for each patient, also regarding the 
coronary interventions or management of valvular 
diseases. Therefore, the role of myocardial viabil-
ity and diagnostic procedures for its evaluation is 
crucial, and the use of artificial intelligence (AI) 
in many of these processes can be optimized and 
automated, reducing workload, time to diagnosis, 
treatment, and, not unimportantly, costs. 

One of the most interesting and extensively 
studied branches of AI is Artificial Neural Net-
works (ANNs). Machine learning (ML) is a subfield 
of AI where the algorithms learn to perform a 
task based on expert engineered characteristics 
describing the data. ANNs are a family of ML 
where statistical learning models are used to es-
timate or approximate functions that can depend 
on many inputs and are predominantly unknown. 
ANNs are mathematical algorithms generated by 
computers. ANNs learn from standard data and 
capture the knowledge contained in the data. This 
technique can find optimal temporal features bet-
ter than other deep/machine learning methods [3].  
Ultrasonographic tissue characterization is  
a potential application for ANNs, which will allow 

us better and more cost-effective diagnosis [4–6]. 
Also, segmentation of the cardiovascular image is 
a developing field in which AI methods have shown 
substantial performance improvements [7, 8]. AI 
is quickly becoming present in various aspects of 
diagnosis and treatment of cardiovascular diseases 
and cardiac imaging is especially important regard-
ing this development [9]. 

A recently published position paper by the 
European Association of Cardiovascular Imaging 
and the European Association of Nuclear Medicine 
highlights the use of ML and deep learning in eve-
ryday practice and the importance of the human 
ability to make final judgment and diagnosis [10]. 

The current study aimed to determine the 
meaning of the texture markers for the recovery 
and viability of the myocardial muscle after a heart 
infarct using echocardiographic images analyzed by 
the neural network. 

Methods

Study group
Sixty-one consecutive patients admitted to 

the Cardiology Department of the Medical Uni-
versity of Lodz with acute coronary syndrome with  
ST-segment elevation, and coronary angiographic 
confirmation of occlusion of a single coronary artery 
were enrolled in the study (43 men, mean age 61 ± 
± 9 years). Standard criteria for ST segment el-
evation myocardial infarction diagnosis were used, 
including symptoms of ischemia, ST-segment 
elevation on electrocardiogram, and significant 
troponin elevation, with at least one measure-
ment exceeding the 99th percentile of the refer-
ence range [11]. All patients were successfully 
treated with PCI within 10 hours from the onset 
of symptoms. 

Cardiac imaging
Echocardiographic images were obtained sev-

en days (7 ± 1.3 days) after PCI using the Siemens 
Sequoia A512 and 4V1c transducer (4–1 MHz). 
Transthoracic echocardiography (TTE) images 
were acquired in all patients [12]. For the analysis, 
533 segments of the heart echo images were used 
(native or contrast — obtained in resting TTE). 
Myocardial perfusion echocardiography was per-
formed after iv Sonovue injection with dedicated 
software and recorded using contrast perfusion 
sequence (CPS, mechanical index < 0.16, 30 FPS). 
Analysis was performed for monochrome images 
(after conversion from originally recorded RGB 
data) or a red component as it contains the majority 
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of image information among all RGB components. 
Within 7 to 10 days after PCI, each patient under-
went a low-dose dobutamine stress echo (LDDSE). 
LDDSE included the administration of dobutamine 
every 3 minutes from 5–10–20 μg/kg/min with 
the storage of images on VIVID 7 (GE US). Each 
patient underwent a CMR study (Siemens Avanto 
1.5T, DE) with gadolinium (Gadovist, Bayer DE) 
late enhancement imaging to define the % trans-
murality of necrosis. CMR was performed 14–21 
days after PCI. All patients after 12 ± 1 month 
follow-up underwent echocardiographic examina-
tion with the evaluation of myocardial function 
recovery and viability (Fig. 1). Follow-up images 
have been obtained with VIVID 7 (GE – US). Two 
independent, experienced echocardiographers 
evaluated all images, and in case of doubts, a third 
expert opinion was crucial for the decision.

Image analysis
Custom analytic software (MaZda 5.20, Insti-

tute of Electronics, Lodz University of Technology) 
was used for extracting myocardial texture param-
eters from bitmaps where each bitmap represents 
a unique myocardial segment. The texture feature 
vectors were then used as input to artificial intel-
ligence algorithms, which were used to distinguish 
between viable and non-viable myocardial seg-
ments and to predict myocardial viability. CMR 
was the gold standard for the viability assessment. 
A number of methods (multilayer perceptrons 
[MLP], non-linear discriminant analysis [NDA], 
support vector machine [SVM], Adaboost) were 

performed to identify the optimal analytic method 
correlating with CMR information regarding the 
scar transmurality. Based on the CMR visualiza-
tion six viability classes were defined for evalu-
ating the late gadolinium enhancement (Fig. 2).  
All applied methods represent supervised ML algo-
rithms. Every myocardial segment (represented by  
a texture feature vector) was labeled by one of the 
classes defined in Figure 2 for further ML meth-
ods training and validation purposes. Myocardial 
function recovery assessment was performed 
for every patient after 12 ± 1 months and as a 
reference method, echocardiographic examina-
tion was used.

Images from end-systolic frames derived from 
two consecutive cardiac cycles in three apical echo-
cardiographic views were used for the analysis. 
Images were evaluated from the four-, three- and 
two-chamber view of the heart with myocardium 
analyzed in a 17-segment model [13].

The image analysis included determining 
the regions of interest (ROIs) by the physician 
performing the examination. Non-overlapping 
ROIs were manually traced during end-systole 
in all images (all 17 segments were divided into 
two samples, and in each projection from two 
sequences, the segments have been marked). For 
each ROI, 283 texture features were calculated for 
defined regions of interest in each image, including 
9 features from the histogram, 5 from the gradi-
ent matrix, 20 from the run-length matrix, 220 
from the co-occurrence matrix, 5 from the autore-
gression model, and 44 from wavelet transform.  

Figure 1. The diagram of the imaging procedure and data flow performed in the study; CMR — cardiac magnetic 
resonance; LDDS — low-dose dobutamine stress; PCI — percutaneous coronary intervention

Follow-up Echo
12 ± 1 month

Input data Output data results

Machine learning

CMR
14–21 days after PCI

Echo images
7 ± 1 days after PCI

Contrast echo
7 ± 1 days after PCI

LDDS echo
7–1 days after PCI

Echo grey images —
79% correct classication for

function recovery

Echo contrast images —
74% correct classication for

function recovery

LDDS echo — 
75% correct classication for 

function recovery
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Analysis for co-occurrence matrix evaluation was 
performed at a distance of 1 to 5 pixels and in four 
directions (horizontal, vertical, diagonal, and anti-
diagonal) [14, 15]. Sample co-occurrence matrix for 
textures representing heart tissues with different 
necrosis levels are shown in Supplementary 
Figure S1.

Contrast-enhanced echocardiographic images 
were analyzed in the same manner after selecting 
the most informative red component for further 
evaluation.

To overcome the significant low counts in vi-
ability classes 1 and 5 (Fig. 2), it was decided to 
divide all the segments in the 17th segment model 
into two smaller ROIs (side-by-side, full thickness; 
Fig. 1). 

Digital processing — artificial intelligence
For prediction (and for classification) texture 

features were selected using a two step procedure. 
First, among 283 texture parameters only the fea-
tures that were characterized by the lowest vari-
ability were selected. For this purpose, normalized 
standard deviation ϵ was calculated (1): 

= ∗ 100%    (1) 

where mf and σf are mean value and standard 
deviation of the texture feature f evaluated for all 
image ROIs, respectively. The evaluation was per-
formed separately for each ROI location and for dif-
ferent viability grades. Finally, 30 features with the 
lowest ϵ were selected. In the second stage, a fur-

ther reduction in the number of features was done 
by means of the Fisher criterion and the algorithms 
designed for minimizing the misclassification (POE) 
with an average correlation coefficient (ACC). Such 
POE + ACC method is based on reducing both 
the probability of misclassification (POE) and the 
average correlation coefficient (ACC) between the 
selected parameters. As a result, a selection process 
is achieved that ensures minor classification error, 
with a limited correlation coefficient between the 
selected features. Based on both approaches, 10 to 
13 were selected from 30 previously chosen. Since 
experiments have shown that the classification and 
prediction results do not depend on the feature 
reduction method used (Fisher or POE + ACC), 
the results were obtained using the POE + ACC 
method because it generates a set of uncorrelated 
texture parameters. The two-stage feature selec-
tion method provides a target feature vector that 
is characterized by limited variability within the 
analyzed classes, contains uncorrelated features 
and minimizes the classification error. 

To classify selected features (as well as for 
prediction of the recovery of myocardial func-
tion), neural networks — MLP, NDA, and SVM 
classifier with two kernels (polynomial and radial 
basis functions) were implemented [16, 17]. The 
results were correlated with information from the 
CMR concerning the degree of tissue necrosis to 
determine the optimal analysis method. Moreover, 
decision trees were used as “weak” classifiers in 
the AdaBoost algorithm implemented to predict 
parameter values that assess postinfarction myo-

Figure 2. The number of samples in each class of necrosis in cardiac magnetic resonance
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1 4 1–25
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3 77 51–75

4 44 76–99

5 32 100
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cardial viability [18]. Texture feature evaluation, 
feature selection and MLP and NDA classification 
was performed using MaZda 5.2 software while 
prediction of the recovery of myocardial function 
using MLP, SVM and AdaBoost algorithms was 
done with use of Weka 3.8 package (Waikato Uni-
versity, New Zealand) [19].

All results presented in Tables 1 and 2 were 
obtained using 5-fold cross-validation used for as-
sessing classifiers quality. The final results of the 
classifiers’ metrics were calculated as the average 
value of the five obtained results of their testing.

Perceptron is one of the basic models of one-
way networks used for classification. The purpose 
of each neuron in the network is to receive signals 
from other (not necessarily all) of the neurons, sum 

these signals, processing the summary signal using 
the concept [20–22]. 

In the present study, 10 to 13 input features 
corresponding to the number of elements of the 
input layer were used. The hidden layer contained 
four neurons. The output layer consisted of 2 to 3 
neurons corresponding to the number of analyzed 
classes. 

Statistical analysis
Normal distribution was checked with the 

Shapiro-Wilk test. The cross-table was used for the 
analysis of viability, evaluation of positive predic-
tive value, and negative predictive value. All the 
analyses were performed with IBM SPSS Statistic 
20 software. 

Table 1. Artificial Neural Networks analysis of echocardiographic images (with and without contrast 
enhancement) regarding the detection of myocardial viability. These values represent percent agree-
ment with cardiac magnetic resonance results

Groups Two-layer perceptron Nonlinear discriminant 
analysis 

Support vector machine 
(polynomial kernel)

Red — RGB  
(contrast  

enhanced)

Mono-
chrome

Red — RGB Monochro-
matic

Red — RGB Mono-
chrome

0 vs. (2,3,4,5) 76.36% 63.34% 73.35% 62.40% 76.71% 68.33%

0 vs. (2,3) vs. (4,5) 60.73% 58.14% 54.58% 56.98% 42.54% 55.64%

(0,2) vs. (3,4,5) 74.44% 63.37% 71.56% 61.37% 74.31% 64.46%

Table 2. The predictors of texture analysis in dobutamine stress echo examination for the recovery of 
myocardial function after 12 months

Method of 
clasification

Parameter of 
the analysis

Sensitivity Specificity PPV NPV Best  
prediction

MLP R_LDDSE 78.57% 35.00% 55.93% 60.87% 55.16%

GREY_LDDSE 92.86% 24.39% 55.71% 76.92% 55.25%

BW_LDDSE 26.32% 100.00% 100.00% 70.21% 67.47%

R_FUP 67.69% 36.36% 75.86% 27.59% 74.50%

GREY_FUP 96.92% 13.04% 75.90% 60.00% 74.43%

rb_SVM R_LDDSE 83.33% 36.59% 57.38% 68.18% 59.99%

GREY_LDDSE 86.05% 57.50% 68.52% 79.31% 59.17%

poli_SVM R_LDDSE 71.43% 47.50% 58.82% 61.29% 57.58%

GREY_LDDSE 76.74% 65.00% 70.21% 72.22% 58.56%

AdaBoost R_LDDSE 76.19% 40.00% 57.14% 61.54% 57.88%

GREY_LDDSE 64.29% 62.50% 64.29% 62.50% 57.96%

BW_LDDSE 30.00% 93.75% 75.00% 68.18% 66.50%

R_FUP 93.85% 4.35% 73.49% 20.00% 73.36%

GREY_FUP 83.33% 36.36% 79.71% 42.11% 74.43%
BW — monochromatic image; FUP — follow up; LDDSE — low dose dobutamine stress echo; MLP — multilayer perceptron; NPV — negative 
predictive value; PPV — positive predictive value; R — red component of the contrast RGB images; rb_SVM — support vector machine (radial 
basis function kernel); poli_SVM — support vector machine (polynomial kernel)
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Results

A group of selected stable parameters, in-
cluding selected run-length matrix features, the 
percentage of non-zero elements of the gradient 
have been evaluated. For the analysis, the myo-
cardium viability was divided into different groups 
according to the thickness of the viable muscle 
in CMR. Because of the irregular distribution of 
samples in each class, as shown in Figure 2, the 
analysis combined the different groups. In addition, 
a negligible number of samples of class 1 prevented 
their reliable classification. Therefore, this group 
has not been analyzed. In the primary analysis, the 
comparison between areas in class 2 and class 3 to 
5 was performed (Table 3). From the clinical point 
of view, the most important for us was the analy-
sis and comparison between healthy and diseased 
areas. The results obtained for the different types 
of classifiers for both monochrome and color im-
ages after the use of the contrast agent are shown 
in Table 1. The highest values of perception were 
obtained for the red component in differentiation 
necrosis versus no necrosis (76%) and for necrosis 
up to 50% and more than 50% (74%) (Table 1). 
These results represent the mean percentage of 
positive validation obtained after a 5-fold cross-
validation (Table 1). 

The neural network approach allowed correct 
classification regarding the absence of necrosis in 
73% of segments and 76% of images represent-
ing different levels of transmurality (≤ 50% or  
> 50%) based on resting contrast imaging. These 
results were obtained for a red component of the 
CPS color scale as mean values of 5-fold network 
cross-validation. A similar feature selection and 
classification procedure was applied for native 
grayscale images yielding worse results (68% and 
79% correct classification for segments and indi-
vidual images, respectively). Advanced classifica-
tion of segments into 3 classes: no necrosis (80% 
of regions), 1–50% necrosis (5%), > 50% necrosis 
by magnetic resonance imaging (15%) was 70% 
correct for CPS and 60% correct for native images. 

For the analysis of the myocardial function 
recovery, both monochrome images and color im-
ages were analyzed. As a result of the analysis, it 
was an upheld theory from the previous phases of 
research that texture parameters of red color ultra-
sound images after contrast administration carry 
information capable of classifying regions in terms 
of heart viability and recovery of the myocardial 
function. In the transthoracic echocardiographic 
examination, there were no significant differences 
among the various techniques used to predict 
functional recovery. The best results have been 
obtained for images with contrast administration 
for the red and monochrome data (74% of proper 
classification). Interestingly in dobutamine stress 
echocardiography the results of proper prediction 
were only 67% for monochromatic images. Also, 
in LDDSE for function recovery more effective 
were images with contrast (sensitivity up to 97% 
for monochrome data in MLP), as in the diagnosis 
of lack of recovery monochromatic ones (specific-
ity up to 100% for MLP) (Table 2). This seems 
that in the LDDSE examination, both evaluation 
methods should be performed because they are 
complementary. 

Discussion

Viability assessment is extremely important 
in patient classification for PCI or coronary artery 
by-pass graft procedures. Various techniques may 
be used for the evaluation of viable myocardium. 
However, cost-effectiveness starts to play a very 
important role in everyday practice. According to 
a recent expert consensus from the European As-
sociation of Cardiovascular Imaging, even with the 
strain analysis, viability assessment is limited by  
a lack of specificity [23]. Support from AI is going to 
help doctors by saving time and increasing their ef-
fectiveness. A recently performed study using the 
neural network, based on 50.000 echocardiograms, 
confirmed the high correlation (r = 0.94, limits 
of agreement ± 14.4, sensitivity 0.93, specificity 
087) with the measurements of ejection fraction 

Table 3. The groups of transmurality scar has been the most important for analysis from a clinical 
point of view

No. Groups Transmurality of the impaired myocardial function from cardiac magnetic 
resonance 

1 0 vs. 2 + 3 + 4 + 5 0% vs. 26–100%

2 0 + 2 vs. 3 + 4 + 5 0% + (26–50%) vs. 51–100%

3 0 vs. 2 + 3 vs. 4 + 5 0% vs. 26–75% vs. 76–99%
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done by a cardiologist with 20 years of experi-
ence [24]. The evaluation of the wall motion and 
the thickness of the myocardium with the texture 
analysis can be a good alternative for viability 
testing [25]. The present study results suggest 
that quantitative myocardial textural parameters 
provide valuable information on the evaluation of 
myocardial viability in the standard transthoracic 
examination. In an animal model, Milunksi et al. 
[26] have confirmed that independently of wall 
thickening, the backscatter analysis allows differ-
entiating potentially stunned, viable myocardium 
from necrosis. The use of a contrast agent improves 
the detection of viable myocardium segments in 
echocardiographic examination in the analysis of 
texture entropy which was also confirmed by histo-
logical findings [27]. However, in the present study 
it was confirmed for the diagnosis in viability during 
rest echocardiography but not in LDDSE. One of 
the biggest studies evaluating the use of machine 
learning on more than 170 thousand patients whose 
echocardiograms and clinical data have been used 
to predict survival confirmed that artificial intel-
ligence has superior accuracy (all AUC above 0.82) 
in standard clinical models [28]. It was confirmed 
in that study that echocardiographic data have been 
crucial for predicting survival because only 10 vari-
ables were needed to achieve 96% of the maximum 
prediction accuracy, with 6 of these variables be-
ing derived from echocardiography. Similar to the 
current results, Bae et al. [29] have confirmed that 
texture features other than the mean gray level can 
objectively distinguish nonperfused from perfused 
myocardium in myocardial contrast echocardiogra-
phy images and may thus augment the diagnostic 
accuracy of current analysis techniques. This may 
be another indication to increase a class of recom-
mendation for contrast use in future guidelines. 

Many studies have confirmed that low dose or 
combined low and high-dose dobutamine infusion 
protocols performed by clinicians have clinically 
useful sensitivity (75 to 80%) and specificity (80 to 
85%) for the identification of viable segments with 
functional recovery after revascularization [30, 
31]. This confirms that contrast and monochrome 
images with neural network analysis may have 
similar values as in studies with regular evaluation. 
Moreover, a study by Omar et al. [32] used imaging-
derived models of three-dimensional (3D) motion 
at rest and stress within random forests, support 
vector machines, and a deep learning approach 
consisting of a convolutional neural network. They 
found that the convolutional neural network pro-
vided the most sensitive model, with a sensitivity 

of 81.1% in a training dataset compared to expert 
operator interpretation [32]. Even when some 
augmentation techniques are used to increase the 
number of training samples, there is a need to 
collect hundreds of echocardiograms representing 
different degrees of necrosis. 

The recent study, which aimed to use our 
study of ANN in evaluating myocardial perfusion 
in coronary angiography to predict the result 
of angiography or obstructive coronary artery 
disease, confirmed the added value of the use of 
ANN from 11% to 20% [33]. In CMR, where deep 
learning algorithms analyzed the 3d dataset, the 
correlation coefficient can be r > 0.95 in the man-
ual and automatic evaluation of the left and right 
ventricular volumes [34]. A very high correlation  
r = 0.9 with p < 0.001 between automatic and 
manual analysis of segmented scar volumes quan-
tification in hypertrophic cardiomyopathy has been 
obtained in the CMR examination [35]. However, 
CMR has some limitations like cost, patient claus-
trophobia, or history of pacemaker insertion. The 
3D TTE automated analysis also provides a very 
good agreement in left ventricular end-diastolic and 
left ventricular end-systolic volumes with CMR 
(r = 0.84 to 0.95) [36]. In different cardiovascular 
imaging modalities, AI has been used to improve 
speed and quality of acquisition, reduce measure-
ment time, and allow prompt diagnoses, improving 
patient care. It is only a matter of time before we 
will be using various algorithms for predicting pa-
tient survival and definitely, results from echo or 
CMR will be a very important part of them. 

Limitations of this study
The acoustic properties of tissue were trans-

lated into echo texture by the ultrasound instru-
ment. Therefore, the reproducibility of texture 
parameters depends on instrument settings and 
performance. One of them is also the algorithm of 
the saved image in bmp format that reduces the 
number of image gray levels to 256. It was the only 
format in which image files could be exported in 
the case of Siemens Sequoia scanner. The sample 
size was limited but still sufficient for obtaining 
significant results. Moreover, rigorous quality as-
sessment of the echocardiographic assessment is 
essential before the implementation of these meth-
ods in clinical practice. Before making it global, 
it should be kept in mind that homogenization of 
clinical data recording and standardizing imaging 
protocols is crucial before data from different cent-
ers can be fed to ANNs input. Another important 
limitation is the single-center design of the study.  
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Despite the use of 5-fold validation of the imple-
mented machine learning models used, their actual 
assessment of generalization would be possible if 
image data from many medical centers were used, 
acquired with various ultrasound devices. Therefore, 
multicenter studies are needed for a more realistic 
efficiency evaluation of the applied texture analysis 
and machine learning methods for prediction of 
postinfarction myocardial viability in echo images.

Conclusions

Artificial intelligence using a neural network 
based on texture analysis of echocardiograms 
may provide valuable data on myocardial viability 
early after myocardial infarction without the need 
for stress testing. The present study confirmed 
the best detection of necrotic tissue in group 3 
(51–75% of necrosis of the wall) and 4 (76–99% 
of necrosis of the wall). It was also confirmed that 
myocardial contrast enhancement allows a superior 
classification of necrotic tissue compared to native 
grayscale images. AI combined with texture analy-
sis has enormous potential for creating advanced 
prognostic tools in cardiovascular disease, even 
using standard or contrast-enhanced echocardio-
graphic imaging. 
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