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Abstract

Background: Evaluation of standard echocardiographic examination with artificial intelligence may help 

in the diagnosis of myocardial viability and function recovery after acute coronary syndrome. 

Methods: Sixty-one consecutive patients with acute coronary syndrome were enrolled in the present study 

(43 men, mean age 61 ± 9 years). All patients underwent percutaneous coronary intervention (PCI). 533 

segments of the heart echo images were used. After 12 ± 1 months of follow-up, patients had an 

echocardiographic evaluation. After PCI each patient underwent cardiac magnetic resonance (CMR) with 

late enhancement and low-dose dobutamine echocardiographic examination. For texture analysis, custom 

software was used (MaZda 5.20, Institute of Electronics).Linear and non-linear (neural network) 

discriminative analyses were performed to identify the optimal analytic method correlating with CMR 

regarding the necrosis extent and viability prediction after follow-up. Texture parameters were analyzed 

using machine learning techniques: Artificial Neural Networks, Namely Multilayer Perceptron, Nonlinear 

Discriminant Analysis, Support Vector Machine, and Adaboost algorithm.  

Results: The mean concordance between the CMR definition of viability and three classification models in 

Artificial Neural Networks varied from 42% to 76%. Echo-based detection of non-viable tissue was more 



sensitive in the segments with the highest relative transmural scar thickness: 51–75% and 76–99%. The 

best results have been obtained for images with contrast for red and grey components (74% of proper 

classification). In dobutamine echocardiography, the results of appropriate prediction were 67% for 

monochromatic images. 

Conclusions: Detection and semi-quantification of scar transmurality are feasible in echocardiographic 

images analyzed with artificial intelligence. Selected analytic methods yielded similar accuracy, and 

contrast enhancement contributed to the prediction accuracy of myocardial viability after myocardial 

infarction in 12 months of follow-up. 

Keywords: neural network, artificial intelligence, myocardial infarction, myocardial viability, 

myocardial texture

Introduction

In a large group of patients with ischemic heart disease, the evaluation of myocardial viability is 

crucial for clinical and therapeutic decisions. In the last European Society of Cardiology guidelines for the 

revascularization of the heart muscle, the confirmation of myocardial viability has a class IIb level of 

recommendations for the qualification for coronary artery by-pass graft or percutaneous coronary 

intervention (PCI) [1]. In selected groups of patients like those with low ejection fraction < 30% and severe

mitral regurgitation, the evaluation of myocardial viability has even an indication of level IIa [1]. In 

everyday clinical practice for the myocardial viability assessment, we use stress echo with dobutamine, 

single-photon emission computed tomography, cardiac magnetic resonance (CMR), and positron emission 

tomography. According to the cost-effectiveness, the most commonly used is the stress echo with 

dobutamine. Stress echo has some side effects, is observer-dependent, and the possibility of diagnosing 

myocardial viability with regular echocardiographic examination may be very appealing. 

Echocardiography can be extended to assess myocardial perfusion in rest and stress conditions by 

administration of contrast material which improves the quality of images and allows for the evaluation of 

tissue properties [2]. 

The future of medicine is to individualize the therapy for each patient, also regarding the coronary 

interventions or management of valvular diseases. Therefore, the role of myocardial viability and 

diagnostic procedures for its evaluation is crucial, and the use of artificial intelligence (AI) in many of 

these processes can be optimized and automated, reducing workload, time to diagnosis, treatment, and, not 

unimportantly, costs. 

One of the most interesting and extensively studied branches of AI is Artificial Neural Networks 

(ANNs). Machine learning (ML) is a subfield of AI where the algorithms learn to perform a task based on 
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expert engineered characteristics describing the data. ANNs are a family of ML where statistical learning 

models are used to estimate or approximate functions that can depend on many inputs and are 

predominantly unknown. ANNs are mathematical algorithms generated by computers. ANNs learn from 

standard data and capture the knowledge contained in the data. This technique can find optimal temporal 

features better than other deep/machine learning methods [3]. Ultrasonographic tissue characterization is a 

potential application for ANNs, which will allow us better and more cost-effective diagnosis [4, 5, 6]. Also,

segmentation of the cardiovascular image is a developing field in which AI methods have shown 

substantial performance improvements [7, 8]. AI is quickly becoming present in various aspects of 

diagnosis and treatment of cardiovascular diseases and cardiac imaging is especially important regarding 

this development [9]. 

A recently published position paper by the European Association of Cardiovascular Imaging and the

European Association of Nuclear Medicine highlights the use of ML and deep learning in everyday practice

and the importance of the human ability to make final judgment and diagnosis [10]. 

The current study aimed to determine the meaning of the texture markers for the recovery and 

viability of the myocardial muscle after a heart infarct using echocardiographic images analyzed by the 

neural network. 

Methods

Study group

Sixty-one consecutive patients admitted to the Cardiology Department of the Medical University of 

Lodz with acute coronary syndrome with ST-segment elevation, and coronary angiographic confirmation of

occlusion of a single coronary artery were enrolled in the study (43 men, mean age 61 ± 9 years). Standard 

criteria for ST segment elevation myocardial infarction diagnosis were used, including symptoms of 

ischemia, ST-segment elevation on electrocardiogram, and significant troponin elevation, with at least one 

measurement exceeding the 99th percentile of the reference range [11]. All patients were successfully 

treated with PCI within 10 hours from the onset of symptoms. 

Cardiac imaging

Echocardiographic images were obtained seven days (7 ± 1.3 days) after PCI using the Siemens 

Sequoia A512 and 4V1c transducer (4–1 MHz). Transthoracic echocardiography (TTE) images were 

acquired in all patients [12]. For the analysis, 533 segments of the heart echo images were used (native or 

contrast — obtained in resting TTE). Myocardial perfusion echocardiography was performed after iv 

Sonovue injection with dedicated software and recorded using contrast perfusion sequence (CPS, 

mechanical index < 0.16, 30 FPS). Analysis was performed for monochrome images (after conversion from

3



originally recorded RGB data) or a red component as it contains the majority of image information among 

all RGB components. Within 7 to 10 days after PCI, each patient underwent a low-dose dobutamine stress 

echo (LDDSE). LDDSE included the administration of dobutamine every 3 minutes from 5–10–20 

μg/kg/min with the storage of images on VIVID 7 (GE US). Each patient underwent a CMR study 

(Siemens Avanto 1.5T, DE) with gadolinium (Gadovist, Bayer DE) late enhancement imaging to define the 

% transmurality of necrosis. CMR was performed 14–21 days after PCI. All patients after 12 ± 1 month 

follow-up underwent echocardiographic examination with the evaluation of myocardial function recovery 

and viability (Fig. 1). Follow-up images have been obtained with VIVID 7 (GE – US). Two independent, 

experienced echocardiographers evaluated all images, and in case of doubts, a third expert opinion was 

crucial for the decision.

Image analysis

Custom analytic software (MaZda 5.20, Institute of Electronics, Lodz University of Technology) 

was used for extracting myocardial texture parameters from bitmaps where each bitmap represents a unique

myocardial segment. The texture feature vectors were then used as input to artificial intelligence 

algorithms, which were used to distinguish between viable and non-viable myocardial segments and to 

predict myocardial viability. CMR was the gold standard for the viability assessment. A number of methods

(multilayer perceptrons [MLP], non-linear discriminant analysis [NDA], support vector machine [SVM], 

Adaboost) were performed to identify the optimal analytic method correlating with CMR information 

regarding the scar transmurality. Based on the CMR visualization six viability classes were defined for 

evaluating the late gadolinium enhancement (Fig. 2). All applied methods represent supervised ML 

algorithms. Every myocardial segment (represented by a texture feature vector) was labeled by one of the 

classes defined in Figure 2 for further ML methods training and validation purposes. Myocardial function 

recovery assessment was performed for every patient after 12 ± 1 months and as a reference method, 

echocardiographic examination was used.

Images from end-systolic frames derived from two consecutive cardiac cycles in three apical 

echocardiographic views were used for the analysis. Images were evaluated from the four-, three- and two-

chamber view of the heart with myocardium analyzed in a 17-segment model [13].

The image analysis included determining the regions of interest (ROIs) by the physician performing

the examination. Non-overlapping ROIs were manually traced during end-systole in all images (all 17 

segments were divided into two samples, and in each projection from two sequences, the segments have 

been marked). For each ROI, 283 texture features were calculated for defined regions of interest in each 

image, including 9 features from the histogram, 5 from the gradient matrix, 20 from the run-length matrix, 

220 from the co-occurrence matrix, 5 from the autoregression model, and 44 from wavelet transform. 
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Analysis for co-occurrence matrix evaluation was performed at a distance of 1 to 5 pixels and in four 

directions (horizontal, vertical, diagonal, and anti-diagonal) [14, 15]. Sample co-occurrence matrix for 

textures representing heart tissues with different necrosis levels are shown in Supplementary Figure S1.

Contrast-enhanced echocardiographic images were analyzed in the same manner after selecting the 

most informative red component for further evaluation.

To overcome the significant low counts in viability classes 1 and 5 (Fig. 2), it was decided to divide 

all the segments in the 17th segment model into two smaller ROIs (side-by-side, full thickness; Fig. 1). 

Digital processing — artificial intelligence

For prediction (and for classification) texture features were selected using a two step procedure. First, 

among 283 texture parameters only the features that were characterized by the lowest variability were 

selected. For this purpose, normalized standard deviation  was calculated (1): ϵ

ϵ=
σ f

mf

∗100 %  (1)

where mf and σf are mean value and standard deviation of the texture feature f evaluated for all image 

ROIs, respectively. The evaluation was performed separately for each ROI location and for different 

viability grades. Finally, 30 features with the lowest  were selected. In the second stage, a further ϵ

reduction in the number of features was done by means of the Fisher criterion and the algorithms designed 

for minimizing the misclassification (POE) with an average correlation coefficient (ACC). Such POE + 

ACC method is based on reducing both the probability of misclassification (POE) and the average 

correlation coefficient (ACC) between the selected parameters. As a result, a selection process is achieved 

that ensures minor classification error, with a limited correlation coefficient between the selected features. 

Based on both approaches, 10 to 13 were selected from 30 previously chosen. Since experiments have 

shown that the classification and prediction results do not depend on the feature reduction method used 

(Fisher or POE + ACC), the results were obtained using the POE + ACC method because it generates a set 

of uncorrelated texture parameters. The two-stage feature selection method provides a target feature vector 

that is characterized by limited variability within the analyzed classes, contains uncorrelated features and 

minimizes the classification error. 

To classify selected features (as well as for prediction of the recovery of myocardial function), 

neural networks — MLP, NDA, and SVM classifier with two kernels (polynomial and radial basis 

functions) were implemented [16, 17]. The results were correlated with information from the CMR 

concerning the degree of tissue necrosis to determine the optimal analysis method. Moreover, decision trees

were used as “weak” classifiers in the AdaBoost algorithm implemented to predict parameter values that 

assess postinfarction myocardial viability [18]. Texture feature evaluation, feature selection and MLP and 
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NDA classification was performed using MaZda 5.2 software while prediction of the recovery of 

myocardial function using MLP, SVM and AdaBoost algorithms was done with use of Weka 3.8 package 

(Waikato University, New Zealand) [19].

All results presented in Tables 1 and 2 were obtained using 5-fold cross-validation used for 

assessing classifiers quality. The final results of the classifiers’ metrics were calculated as the average value

of the five obtained results of their testing.

Perceptron is one of the basic models of one-way networks used for classification. The purpose of 

each neuron in the network is to receive signals from other (not necessarily all) of the neurons, sum these 

signals, processing the summary signal using the concept [20, 21, 22]. 

In the present study, 10 to 13 input features corresponding to the number of elements of the input 

layer were used. The hidden layer contained four neurons. The output layer consisted of 2 to 3 neurons 

corresponding to the number of analyzed classes. 

Statistical analysis

Normal distribution was checked with the Shapiro-Wilk test. The cross-table was used for the 

analysis of viability, evaluation of positive predictive value, and negative predictive value. All the analyses 

were performed with IBM SPSS Statistic 20 software. 

Results

A group of selected stable parameters, including selected run-length matrix features, the percentage 

of non-zero elements of the gradient have been evaluated. For the analysis, the myocardium viability was 

divided into different groups according to the thickness of the viable muscle in CMR. Because of the 

irregular distribution of samples in each class, as shown in Figure 2, the analysis combined the different 

groups. In addition, a negligible number of samples of class 1 prevented their reliable classification. 

Therefore, this group has not been analyzed. In the primary analysis, the comparison between areas in class

2 and class 3 to 5 was performed (Table 3). From the clinical point of view, the most important for us was 

the analysis and comparison between healthy and diseased areas. The results obtained for the different 

types of classifiers for both monochrome and color images after the use of the contrast agent are shown in 

Table 1. The highest values of perception were obtained for the red component in differentiation necrosis 

versus no necrosis (76%) and for necrosis up to 50% and more than 50% (74%) (Table 1). These results 

represent the mean percentage of positive validation obtained after a 5-fold cross-validation (Table 1). 

The neural network approach allowed correct classification regarding the absence of necrosis in 

73% of segments and 76% of images representing different levels of transmurality (≤ 50% or > 50%) based

on resting contrast imaging. These results were obtained for a red component of the CPS color scale as 

mean values of 5-fold network cross-validation. A similar feature selection and classification procedure 
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was applied for native grayscale images yielding worse results (68% and 79% correct classification for 

segments and individual images, respectively). Advanced classification of segments into 3 classes: no 

necrosis (80% of regions), 1–50% necrosis (5%), > 50% necrosis by magnetic resonance imaging (15%) 

was 70% correct for CPS and 60% correct for native images. 

For the analysis of the myocardial function recovery, both monochrome images and color images 

were analyzed. As a result of the analysis, it was an upheld theory from the previous phases of research that

texture parameters of red color ultrasound images after contrast administration carry information capable of

classifying regions in terms of heart viability and recovery of the myocardial function. In the transthoracic 

echocardiographic examination, there were no significant differences among the various techniques used to

predict functional recovery. The best results have been obtained for images with contrast administration for 

the red and monochrome data (74% of proper classification). Interestingly in dobutamine stress 

echocardiography the results of proper prediction were only 67% for monochromatic images. Also, in 

LDDSE for function recovery more effective were images with contrast (sensitivity up to 97% for 

monochrome data in MLP), as in the diagnosis of lack of recovery monochromatic ones (specificity up to 

100% for MLP) (Table 2). This seems that in the LDDSE examination, both evaluation methods should be 

performed because they are complementary. 

Discussion

Viability assessment is extremely important in patient classification for PCI or coronary artery by-

pass graft procedures. Various techniques may be used for the evaluation of viable myocardium. However, 

cost-effectiveness starts to play a very important role in everyday practice. According to a recent expert 

consensus from the European Association of Cardiovascular Imaging, even with the strain analysis, 

viability assessment is limited by a lack of specificity [23]. Support from AI is going to help doctors by 

saving time and increasing their effectiveness. A recently performed study using the neural network, based 

on 50.000 echocardiograms, confirmed the high correlation (r = 0.94, limits of agreement ± 14.4, 

sensitivity 0.93, specificity 087) with the measurements of ejection fraction done by a cardiologist with 20 

years of experience [24]. The evaluation of the wall motion and the thickness of the myocardium with the 

texture analysis can be a good alternative for viability testing [25]. The present study results suggest that 

quantitative myocardial textural parameters provide valuable information on the evaluation of myocardial 

viability in the standard transthoracic examination. In an animal model, Milunksi et al. [26] have confirmed

that independently of wall thickening, the backscatter analysis allows differentiating potentially stunned, 

viable myocardium from necrosis. The use of a contrast agent improves the detection of viable myocardium

segments in echocardiographic examination in the analysis of texture entropy which was also confirmed by

histological findings [27]. However, in the present study it was confirmed for the diagnosis in viability 
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during rest echocardiography but not in LDDSE. One of the biggest studies evaluating the use of machine 

learning on more than 170 thousand patients whose echocardiograms and clinical data have been used to 

predict survival confirmed that artificial intelligence has superior accuracy (all AUC above 0.82) in 

standard clinical models [28]. It was confirmed in that study that echocardiographic data have been crucial 

for predicting survival because only 10 variables were needed to achieve 96% of the maximum prediction 

accuracy, with 6 of these variables being derived from echocardiography. Similar to the current results, Bae

et al. [29] have confirmed that texture features other than the mean gray level can objectively distinguish 

nonperfused from perfused myocardium in myocardial contrast echocardiography images and may thus 

augment the diagnostic accuracy of current analysis techniques. This may be another indication to increase 

a class of recommendation for contrast use in future guidelines. 

Many studies have confirmed that low dose or combined low and high-dose dobutamine infusion 

protocols performed by clinicians have clinically useful sensitivity (75 to 80%) and specificity (80 to 85%) 

for the identification of viable segments with functional recovery after revascularization [30, 31]. This 

confirms that contrast and monochrome images with neural network analysis may have similar values as in 

studies with regular evaluation. Moreover, a study by Omar et al. [32] used imaging-derived models of 

three-dimensional (3D) motion at rest and stress within random forests, support vector machines, and a 

deep learning approach consisting of a convolutional neural network. They found that the convolutional 

neural network provided the most sensitive model, with a sensitivity of 81.1% in a training dataset 

compared to expert operator interpretation [32]. Even when some augmentation techniques are used to 

increase the number of training samples, there is a need to collect hundreds of echocardiograms 

representing different degrees of necrosis. 

The recent study, which aimed to use our study of ANN in evaluating myocardial perfusion in 

coronary angiography to predict the result of angiography or obstructive coronary artery disease, confirmed

the added value of the use of ANN from 11% to 20% [33]. In CMR, where deep learning algorithms 

analyzed the 3d dataset, the correlation coefficient can be r > 0.95 in the manual and automatic evaluation 

of the left and right ventricular volumes [34]. A very high correlation r = 0.9 with p < 0.001 between 

automatic and manual analysis of segmented scar volumes quantification in hypertrophic cardiomyopathy 

has been obtained in the CMR examination [35]. However, CMR has some limitations like cost, patient 

claustrophobia, or history of pacemaker insertion. The 3D TTE automated analysis also provides a very 

good agreement in left ventricular end-diastolic and left ventricular end-systolic volumes with CMR (r = 

0.84 to 0.95) [36]. In different cardiovascular imaging modalities, AI has been used to improve speed and 

quality of acquisition, reduce measurement time, and allow prompt diagnoses, improving patient care. It is 

only a matter of time before we will be using various algorithms for predicting patient survival and 

definitely, results from echo or CMR will be a very important part of them. 
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Limitations of this study

The acoustic properties of tissue were translated into echo texture by the ultrasound instrument. 

Therefore, the reproducibility of texture parameters depends on instrument settings and performance. One 

of them is also the algorithm of the saved image in bmp format that reduces the number of image gray 

levels to 256. It was the only format in which image files could be exported in the case of Siemens Sequoia

scanner. The sample size was limited but still sufficient for obtaining significant results. Moreover, 

rigorous quality assessment of the echocardiographic assessment is essential before the implementation of 

these methods in clinical practice. Before making it global, it should be kept in mind that homogenization 

of clinical data recording and standardizing imaging protocols is crucial before data from different centers 

can be fed to ANNs input. Another important limitation is the single-center design of the study. Despite the 

use of 5-fold validation of the implemented machine learning models used, their actual assessment of 

generalization would be possible if image data from many medical centers were used, acquired with 

various ultrasound devices. Therefore, multicenter studies are needed for a more realistic efficiency 

evaluation of the applied texture analysis and machine learning methods for prediction of postinfarction 

myocardial viability in echo images.

Conclusions

Artificial intelligence using a neural network based on texture analysis of echocardiograms may 

provide valuable data on myocardial viability early after myocardial infarction without the need for stress 

testing. The present study confirmed the best detection of necrotic tissue in group 3 (51–75% of necrosis of

the wall) and 4 (76–99% of necrosis of the wall). It was also confirmed that myocardial contrast 

enhancement allows a superior classification of necrotic tissue compared to native grayscale images. AI 

combined with texture analysis has enormous potential for creating advanced prognostic tools in 

cardiovascular disease, even using standard or contrast-enhanced echocardiographic imaging. 

Conflict of interest: None declared
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Figure 1. The diagram of the imaging procedure and data flow performed in the study; CMR — cardiac 

magnetic resonance; LDDS — low-dose dobutamine stress; PCI — percutaneous coronary intervention.

Viability

grade
Number of samples

Scar 

transmurality

[%]

79.49%

0.41%

4.41%

7.90%
4.51% 3.28%

0 1 2 3 4 5

0 775 0
1 4 1–25
2 43 26–50
3 77 51–75
4 44 76–99

5 32 100

Figure 2. The number of samples in each class of necrosis in cardiac magnetic resonance.

Table 1. Artificial Neural Networks analysis of echocardiographic images (with and without contrast 

enhancement) regarding the detection of myocardial viability. These values represent percent agreement 

with cardiac magnetic resonance results.
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Groups Two-layer perceptron Nonlinear 

discriminant analysis 

support vector machine 

(polynomial kernel)
Red – RGB 

(contrast 

enhanced)

Monoch

rome

Red – RGB Monoch

romatic

Red – RGB Monochro

me

0 vs. (2,3,4,5) 76.36% 63.34% 73.35% 62.40% 76.71% 68.33%
0 vs. (2,3) vs. 

(4,5)

60.73% 58.14% 54.58% 56.98% 42.54% 55.64%

(0,2) vs. (3,4,5) 74.44% 63.37% 71.56% 61.37% 74.31% 64.46%

Table 2. The predictors of texture analysis in dobutamine stress echo examination for the recovery of 

myocardial function after 12 months.

Method of 

clasification

Parameter of 

the analysis

Sensitivit

y
Specificity PPV NPV

Best 

prediction

MLP

R_LDDSE 78.57% 35.00% 55.93% 60.87% 55.16%
GREY_LDDS

E
92.86% 24.39% 55.71% 76.92%

55.25%

BW_LDDSE 26.32% 100.00% 100.00% 70.21% 67.47%

R_FUP 67.69% 36.36% 75.86% 27.59% 74.50%

GREY_FUP 96.92% 13.04% 75.90% 60.00% 74.43%

rb_SVM
R_LDDSE 83.33% 36.59% 57.38% 68.18% 59.99%
GREY_LDDS

E
86.05% 57.50% 68.52% 79.31%

59.17%

poli_SVM
R_LDDSE 71.43% 47.50% 58.82% 61.29% 57.58%
GREY_LDDS

E
76.74% 65.00% 70.21% 72.22%

58.56%

AdaBoost

R_LDDSE 76.19% 40.00% 57.14% 61.54% 57.88%
GREY_LDDS

E
64.29% 62.50% 64.29% 62.50%

57.96%

BW_LDDSE 30.00% 93.75% 75.00% 68.18% 66.50%

R_FUP 93.85% 4.35% 73.49% 20.00% 73.36%

GREY_FUP 83.33% 36.36% 79.71% 42.11% 74.43%
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BW — monochromatic image; FUP — follow up; LDDSE — low dose dobutamine stress echo; rb_SVM 

— support vector machine (radial basis function kernel); MLP — multilayer perceptron; NPV — negative 

predictive value; PPV — positive predictive value; R — red component of the contrast RGB images; 

poli_SVM — support vector machine (polynomial kernel)

Table 3. The groups of transmurality scar has been the most important for analysis from a clinical point of 

view.

No. Groups

Transmurality of the impaired myocardial function from cardiac 

magnetic resonance 
1 0 vs. 2 + 3 + 4 + 5 0% vs. 26–100%
2 0 + 2 vs. 3 + 4 + 5 0% + (26–50%) vs. 51–100%
3 0 vs. 2 + 3 vs. 4 + 5 0% vs. 26–75% vs. 76–99%
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