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Abstract
Background: Current guideline-recommended multiparameters used to assess the risk levels of 
pulmonary arterial hypertension (PAH) are invasive hemodynamic measurements or effort-dependent 
exercise tests. Serum natriuretic peptide is only one kind of effort-free biomarker that has been adopted 
for risk assessment. This study aimed to investigate the application of homocysteine as a non-invasive 
and effort-free measurement for the risk assessment of patients with PAH. 
Methods: Samples of 50 patients diagnosed with PAH via right heart catheterization were obtained, 
and the patients were divided into low-, intermediate- and high-risk groups for further analysis. Ad-
ditionally, serum N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) and homocysteine 
levels of monocrotaline (MCT)-induced PAH rats were analyzed at each week with progressed severity 
of PAH, and they were sacrificed on day 28 with pathology being assessed.
Results: Hyperhomocysteinemia was an independent predictor (odds ratio [OR]: 1.256; 95% confi-
dence interval [CI]: 1.002–1.574) and showed a linear correlation with NT-proBNP. Hyperhomocyst-
einemia could discriminate between low/intermediate and high-risk levels in PAH with a cut-off value 
in 12 µmol/L. Moreover, the elevated homocysteine levels by weeks in MCT rats also demonstrated the 
association between homocysteine and the severity of PAH.
Conclusions: Homocysteine can be a non-invasive and effort-free risk assessment for patients with 
pulmonary hypertension. Homocysteine level had a linear correlation with NT-proBNP level, and pa-
tients with hyperhomocysteinemia had a higher risk level, higher NT-proBNP level, and decreased lower 
diffusing capacity for carbon monoxide. The correlation between homocysteine level and PAH severity 
was also demonstrated in MCT rats. (Cardiol J 2024; 31, 2: 285–299)
Keywords: biomarker, homocysteine, pulmonary hypertension, risk assessment
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Introduction

Pulmonary arterial hypertension (PAH) is de-
fined as mean pulmonary arterial pressure (mPAP) 
> 20 mmHg at rest as assessed by right heart 
catheterization, pulmonary arterial wedge pressure 
≤ 15 mmHg, and pulmonary vascular resistance  
> 2 wood units, according to the classification of 
2022 European Society of Cardiology (ESC)/Eu-
ropean Respiratory Society (ERS) guidelines [1]. 
Pathologic progressions of vascular remodeling 
leads to pulmonary hypertension, right-sided heart 
failure, and death, once compensatory mechanisms 
have failed [2–4].

Most of the ESC/ERS recommended mul-
tiparameters for risk assessment and outcome 
prediction are invasive hemodynamic measure-
ments or effort-dependent exercise tests except 
serum natriuretic peptide, B-type natriuretic pep-
tide (BNP), or N-terminal prohormone of B-type 
natriuretic peptide (NT-proBNP), which is only 
one type of effort-free biomarker that has been 
adopted for risk assessment [5]. However, any kind 
of effort-dependent exercise tests are limited by  
a patient’s physical restriction or exercise disabil-
ity, an alternative or additional biomarker could 
provide more information of outcomes if invasive 
or effort-dependent tests are not accessible or 
available.

There are many circulating biomarkers in-
volved in functional pathways associated with the 
pathobiology of pulmonary hypertension. Homo-
cysteine is one of these circulating biomarkers, 
which involved several pathological functional 
pathways of PAH, and was considered to be cor-
related with diagnosis and prognosis of PAH [6, 7].  
Elevated homocysteine levels have been toxic to 
the vascular endothelium and is an attribute for 
coronary disease, cerebrovascular disease, and 
peripheral vascular disease [8, 9]. However, the 
relationship between homocysteine and pulmonary 
hypertension remains unclear. This study aimed to 
investigate the application of homocysteine as an 
alternative or additional non-invasive and effort- 
-free measurement in addition to serum natriuretic 
peptide for risk assessment of patients with pul-
monary hypertension.

Methods

Samples in this study were obtained from the 
Kaohsiung Veterans General Hospital Biobank with 
approval from the respective ethics committees of 
Kaohsiung Veterans General Hospital. Deidentified 

data of patients diagnosed with pulmonary hyper-
tension were analyzed to establish the association 
between circulating biomarkers and the risk levels 
of pulmonary hypertension. Pulmonary hyperten-
sion was defined as a mPAP ≥ 20 mmHg at rest, as 
assessed by right heart catheterization according 
to 2022 ESC/ERS guidelines [1].

Animal model 
A monocrotaline (MCT)-induced PAH rat 

model was used in this study, and the Institutional 
Animal Care and Use Committee of Kaohsiung 
Veterans General Hospital approved the experi-
mental protocols. Six-week-old male Sprague-
-Dawley rats in 220–280 g, were purchased from 
BioLASCO (Ilan, Taiwan) and handled according 
to the IACUC guidelines. To establish the MCT-
-induced PAH model, Sprague-Dawley rats were 
injected intraperitoneally with 60 mg/kg MCT 
(Sigma-Aldrich, St. Louis, MO, USA) as previ-
ously described [10, 11]. At the 1st, 2nd, 3rd, and  
4th weeks, rat venous blood was drawn for analysis. 
On day 28, the animals were sacrificed, and PAH 
pathology was assessed as described previously 
[12]. All experimental protocols were performed 
in accordance with the European ethical regula-
tion (Directive 2010/63/EU) and approved by the 
Institutional Animal Care and Use Committee, 
Kaohsiung Veterans General Hospital, Taiwan (Ref. 
2019-2021-A054).

Serum NT-proBNP and homocysteine level 
of MCT rats 

Rats were treated with phosphate-buffered 
saline or MCT (60 mg/kg) for 7, 14, 21, and 28 days. 
Blood samples were collected from the tail vein 
of the rats. Serum NT-proBNP and homocysteine 
concentrations were measured using ELISA kits 
(MBS2881463, MyBioSource, Inc., San Diego, CA, 
USA for NT-proBNP; MBS703069, MyBioSource, 
Inc., San Diego, CA, USA for homocysteine) ac-
cording to the manufacturer’s instructions. 

Information about hemodynamic measure-
ments of MCT rats, histology and immunohis-
tochemical analysis of pulmonary arteries, blood 
tests assay for human, multiplex immunoassay of 
human blood, hemodynamics and cardiopulmonary 
function tests of human, and risk level assessment 
are presented in the Supplementary Appendix.

Ethics statement
The Institutional Review Board (IRB) of Ka-

ohsiung Veterans General Hospital approved this 
study (No. KSVGH21-CT9-04). Written informed 
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consent was not required for this study as the 
Biobank research database consisted of de-iden-
tified secondary data for research purposes. The 
IRB of Kaohsiung Veterans General Hospital is-
sued a formal written waiver of the requirement 
for informed consent.

Statistical analyses
SPSS version 22 (IBM Corp., Armonk, NY, 

USA) was used for data analysis. Percentile values 
were used to express categorical data and were 
analyzed using the chi-square test. Mean (μ) and 
standard deviation (SD) values were used for con-
tinuous variables using the Student unpaired test. 
Multiplex immunoassay biomarkers were analyzed 
by one-way analysis of variance (ANOVA) with 
Bonferroni correction, and statistical significance 
was defined as p < 0.05 after verifying the equality 
of variances.

Univariate and multivariate forward stepwise 
logistic regression analyses were performed to 
assess predictors for the high-risk group, and the 
odds ratios (OR) and the associated 95% confidence 
intervals (CI) for significant variables were calcu-
lated, and statistically significant predictor was set 
at p < 0.05. Correlation analysis was performed 
to assess the correlation between the biomarkers 
and NT-proBNP levels. To compare NT-proBNP 
and homocysteine levels with increasing severity 
of pulmonary hypertension by weeks following 
MCT infusion, ANOVA with post-hoc Fisher’s least 
significant difference test was adopted after verify-
ing the equality of variances. In addition, statistical 
significance was set at p < 0.05. 

To find the most appropriate cut-off value for 
selective biomarker to determine the risk level 
for pulmonary hypertension, a receiver operat-
ing characteristic (ROC) analysis was performed. 
Moreover, different biomarkers combinations and 
the comparison between respective predictive 
value of each model were illustrated. The areas 
under the curves (AUC) were calculated.

Results

The basic characteristics of patients with 
pulmonary hypertension based on the ESC/ERS 
guideline-recommended risk assessment are 
reported in Table 1 [13]. There were 3 patients 
in low-risk group, 24 intermediate-risk patient, 
and 23 patients in high-risk group. There were 
no disparities in sex and age between the low/ 
/intermediate-risk and high-risk groups. Biochem-
istry panel demonstrated worse renal function  

blood urea nitrogen = 15.0 ± 4.5 vs. 24.0 ±  
± 13.7 mg/dL, p = 0.006; serum creatinine = 0.9 ±  
± 0.2 vs. 1.2 ± 0.5 mg/dL, p = 0.030) in high- 
-risk group. With regard to circulating biomarkers, 
higher homocysteine (10.6 ± 4.0 vs. 17.0 ± 7.0 
µmol/L, p = 0.005, Fig. 1A), uric acid (UA; 6.0 ±  
± 1.7 vs. 7.7 ± 2.5 mg/dL, p = 0.006, Fig. 1B),  
D-dimer (744.8 ± 579.1 vs. 1,525.5 ± 1,559.7 ng/ 
/mL, p = 0.040, Fig. 1C), and C-reactive protein 
(CRP; 0.7 ± 0.7 vs. 2.6 ± 2.7 mg/dL, p = 0.007, 
Fig. 1D) were observed in the high-risk group. 
Despite no significant differences of multiplex im-
munoassay circulating biomarkers, including angio
poietin-2, bone morphogenetic protein (BMP)-2, 
BMP-4, cluster of differentiation 40 (CD40), en-
doglin, interlukin-6, myeloperoxidase, osteopontin, 
and vascular endothelial growth factor (VEGF), 
there was an increased trend by disease severities. 
Furthermore, Bonferroni correction was applied 
for analysis of multiplex immunoassay biomarkers 
(Suppl. Table S1), and the insignificance could be 
attributed to the small sample size.

Hemodynamics and cardiopulmonary function 
tests for pulmonary hypertension risk assessment 
based on the ESC/ERS guidelines are also listed in 
Table 1. Compared to reports in low/intermediate-
risk group, the high-risk group was reported to 
have worse World Health Organization (WHO) 
functional (Fc III = 11.1% vs. 73.9%, p < 0.001), 
worse exercise and cardiopulmonary exercise 
capacity (six-minute walking distance [6MWD] = 
= 367.7 ± 102.6 vs. 251.4 ± 143.0 m, p < 0.001; VE/ 
/VCO2 = 32.8 ± 7.4 vs. 41.3 ± 14.9, p = 0.049), 
higher NT-proBNP value (NT-proBNP = 794.5 ± 
± 918.5 vs. 4390.6 ± 4843.6 pg/mL, p = 0.002). Re-
garding hemodynamic parameters, patients in the 
high-risk group had worse cardiac function (cardiac 
output = 5.4 ± 0.6 vs. 4.1 ± 1.5 L/min, p = 0.028; 
cardiac index = 3.6 ± 0.5 vs. 2.4 ± 0.9 L/min/m2, 
p = 0.001), worse vascular saturation (pulmonary 
artery saturation = 73.3 ± 4.8 vs. 50.7 ± 15.1%, 
p = 0.007; superior vena cava saturation = 71.3 ±  
± 6.6 vs. 57.5 ± 12.0%, p < 0.001; inferior vena 
cava saturation = 74.5 ± 8.7 vs. 54.9 ± 14.1%, p =  
= 0.005), and higher pulmonary vascular re-
sistance (6.0 ± 3.4 vs. 10.9 ± 8.6 woods, p =  
= 0.034) compared to the reports of patients in 
the low/intermediate-risk group. With regard 
to pulmonary function tests, forced expirato-
ry volume in the first second (FEV1) and FVC 
(FEV1 = 1.9 ± 0.8 vs. 1.4 ± 0.5% predicted, p =  
= 0.024; FVC = 2.3 ± 1.2 vs. 1.7 ± 0.6 L,  
p = 0.020) were lower in the high-risk group than 
in the low/intermediate-risk group.
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Table 1. Basic characteristics, hemodynamics and cardiopulmonary function tests of patients with  
pulmonary hypertension based on risk levels.

Variables Low/intermediate risk  
(n = 27)

High risk  
(n = 23)

P

Female 22.0 (81.5%) 20.0 (87.0%) 0.711

Age [years] 56.4 ± 14.7 63.7 ± 15.8 0.141

Body weight [kg] 60.4 ± 12.5 68.6 ± 25.0 0.166

Body height [cm] 156.5 ± 8.6 151.0 ± 22.5 0.279

Body surface area [m2] 1.6 ± 0.2 1.7 ± 0.2 0.521

Hematology tests:

White blood cells [K/µL] 6.8 ± 2.2 6.8 ± 2.2 0.992

Red blood cells [M/µL] 4.5 ± 0.5 4.6 ± 0.9 0.630

Hemoglobin [g/dL] 13.3 ± 1.7 13.3 ± 1.8 0.952

Hematocrit [%] 40.1 ± 4.3 41.1 ± 6.0 0.510

Red blood cell volume distribution [%] 14.8 ± 4.8 15.9 ± 4.3 0.424

Platelet [K/µL] 250.5 ± 96.2 204.8 ± 73.2 0.069

Neutrophil [%] 62.1 ± 13.6 65.4 ± 10.9 0.349

Lymphocyte [%] 28.2 ± 11.9 23.0 ± 10.1 0.108

Neutrophil/Lymphocyte ratio 3.2 ± 3.1 3.6 ± 2.2 0.625

Prothrombin time [s] 11.1 ± 1.3 18.1 ± 22.8 0.158

International normalized ratio 1.0 ± 0.1 1.2 ± 0.6 0.120

Partial thromboplastin time [s] 31.0 ± 4.6 30.5 ± 6.9 0.779

Biochemistry panel:

Sodium [mmol/L] 141.2 ± 3.1 139.2 ± 3.9 0.043

Blood urea nitrogen [mg/dL] 15.0 ± 4.5 24.0 ± 13.7 0.006

Serum creatinine [mg/dL] 0.9 ± 0.2 1.2 ± 0.5 0.030

Estimated GFR [mL/min/1.73 m2] 73.6 ± 14.3 62.2 ± 26.1 0.070

Fasting plasma glucose level [mg/dL] 100.2 ± 13.9 98.1 ± 32.7 0.796

Aspartate aminotransferase [U/L 30.7 ± 20.4 27.8 ± 12.3 0.542

Alanine aminotransferase [U/L] 25.9 ± 15.2 25.2 ± 18.2 0.874

Alkaline phosphatase [U/L] 62.0 ± 32.4 79.3 ± 32.6 0.105

Total bilirubin [mg/dL] 0.7 ± 0.5 0.9 ± 0.7 0.234

Albumin [g/dL] 4.1 ± 0.6 3.8 ± 0.6 0.070

Lactate dehydrogenase [U/L] 214.7 ± 89.2 212.6 ± 34.2 0.925

Lipid profile:

Total cholesterol [mg/dL] 178.2 ± 40.9 162.3 ± 32.1 0.146

High-density lipoprotein [mg/dL] 50.5 ± 17.5 46.5 ± 16.2 0.413

Low-density lipoprotein [mg/dL] 96.0 ± 25.7 98.6 ± 30.6 0.751

Triglyceride [mg/dL] 120.3 ± 65.7 96.4 ± 37.3 0.154

Multiplex immunoassay circulating biomarkers:

Angiopoietin-2 [pg/mL] 6237.3 ± 4790.3 5871.0 ± 5029.6 0.793

BMP-2 [pg/mL] 14.6 ± 0.0 12.4 ± 2.1 0.074

BMP-4 [pg/mL] 4.5 ± 0.6 5.1 ± 1.2 0.084

CD40 [pg/mL] 1689.6 ± 923.9 1666.3 ± 817.7 0.926

Endoglin [pg/mL] 1319.1 ± 541.6 1411.1 ± 433.6 0.522

Interlukin-6 [pg/mL] 2.5 ± 1.6 3.6 ± 6.5 0.452

Myeloperoxidase [pg/mL] 6476.3 ± 1897.4 6345.4 ± 1753.7 0.802

Osteopontin [pg/mL] 28901.9 ± 13600.6 35805.0 ± 34042.2 0.369

VEGF [pg/mL] 34.7 ± 23.8 26.2 ± 13.8 0.141

von Willebrand factor [%] 161.9 ± 53.5 164.8 ± 60.5 0.890
→
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Univariate (Table 2) and multivariate (Table 3)  
logistic regression analyses were performed to 
assess the predictors in the high-risk group. Mul-
tivariate logistic regression analysis demonstrated 
that homocysteine (OR: 1.256; 95% CI: 1.002– 
–1.574, Table 3) was an independent predictor of 
high-risk levels. Furthermore, correlation analysis 
was performed to assess potential biomarkers that 
correlate with NT-proBNP levels (Table 4). Homo-
cysteine (β = 0.75, p < 0.001) and UA (β= 0.44,  
p = 0.002) levels showed a good linear correlation 
with NT-proBNP levels. The linear correlation 
between NT-proBNP/homocysteine (Fig. 1E) and 
NT-proBNP/UA (Fig. 1F) was shown in Figure 1. 

To find the most appropriate cut-off value 
for homocysteine for determining the risk level 
for pulmonary hypertension, a ROC analysis was 
performed. The best cut-off value was homo-
cysteine = 12 µmol/L, the area under the ROC 
curve was 0.82, with a 95% CI between 0.67 
to 0.97. Hyperhomocysteinemia (homocysteine  
> 12 µmol/L) could discriminate high-risk levels 
from low/intermediate-risk levels in pulmonary 
hypertension, with more high-risk patients (≤ 12: 
18.8%; > 12: 70.6%, p = 0.003, Fig. 1G) in patients 
with hyperhomocysteinemia. Patients with homo-
cysteine > 12 µmol/L also had higher NT-proBNP 
(803.0 ± 1,165.4 vs. 4,057.7 ± 5,230.9 pg/mL,  

Low/intermediate risk  
(n = 27)

High risk  
(n = 23)

P

World Health Organization functional class III 3.0 (11.1%) 17.0 (73.9%) < 0.001

Six-minute walking distance [m] 367.7 ± 102.6 251.4 ± 143.0 < 0.001

Cardiopulmonary exercise testing:

Peak oxygen consumption [mL/min/kg] 74.4 ± 28.0 65.6 ± 25.4 0.315

VE/VCO2 32.8 ± 7.4 41.3 ± 14.9 0.049

NT-proBNP [pg/mL] 794.5 ± 918.5 4390.6 ± 4843.6 0.002

Hemodynamics:

Heart rate [bpm] 83.5 ± 16.5 85.9 ± 13.0 0.583

Right atrial pressure [mmHg] 11.7 ± 3.8 13.9 ± 6.3 0.235

Cardiac output [L/min, Thermodilution method] 5.4 ± 0.6 4.1 ± 1.5 0.028

Cardiac index [L/min/m2, Thermodilution method] 3.6 ± 0.5 2.4 ± 0.9 0.001

Cardiac output [L/min, Fick formula] 4.3 ± 1.3 3.5 ± 1.4 0.162

Cardiac index [L/min/m2, Fick formula] 2.7 ± 0.8 2.1 ± 0.8 0.082

Pulmonary artery saturation [%] 73.3 ± 4.8 50.7 ± 15.1 0.007

Superior vena cava saturation [%] 71.3 ± 6.6 57.5 ± 12.0 < 0.001

Inferior vena cava saturation [%] 74.5 ± 8.7 54.9 ± 14.1 0.005

Mean arterial pressure [mmHg] 97.7 ± 12.1 98.6 ± 12.3 0.802

Mean pulmonary arterial pressure [mmHg] 36.5 ± 14.1 43.6 ± 11.7 0.082

Pulmonary arterial wedge pressure [mmHg] 8.7 ± 6.5 11.0 ± 7.0 0.238

Pulmonary vascular resistance [woods] 6.0 ± 3.4 10.9 ± 8.6 0.034

Left ventricular ejection fraction [%] 59.8 ± 4.0 58.9 ± 2.7 0.365

Peak tricuspid regurgitation peak gradient [mmHg] 51.5 ± 16.0 59.6 ± 23.3 0.154

Pulmonary function tests:

Total lung capacity [L] 4.6 ± 1.3 4.3 ± 0.9 0.587

FEV1 [s] 1.9 ± 0.8 1.4 ± 0.5 0.024

FEV1/FVC (% predicted) 82.0 ± 7.6 83.4 ± 13.0 0.667

Diffusing capacity for carbon monoxide (% predicted) 58.3 ± 25.8 50.8 ± 25.3 0.385

Data of continuous variables were expressed as mean ± standard deviation. Changes of categorical variables were analyzed by chi-square 
tests and were expressed by (N, %); BMP — bone morphogenetic protein; CD40 — cluster of differentiation 40; FEV1 — forced expiratory  
volume in first second; GFR — glomerular filtration rate; NT-proBNP — N-terminal prohormone of B-type natriuretic peptide; VEGF — vascular 
endothelial growth factor; VE/VCO2 — ventilatory equivalents for carbon dioxide

Table 1 (cont.). Basic characteristics, hemodynamics and cardiopulmonary function tests of patients 
with pulmonary hypertension based on risk levels.
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Figure 1. Circulating biomarkers of patients with pulmonary hypertension between low/intermediate (L/I) and high-
risk groups and linear relationships between biomarkers and N-terminal prohormone of B-type natriuretic peptide  
(NT-proBNP) were illustrated in panels A–F. In the high-risk group, there were higher homocysteine (10.6 ± 4.0 vs. 17.0 ±  
± 7.0 µmol/L, p = 0.005, A), higher uric acid (6.0 ± 1.7 vs. 7.7 ± 2.5 mg/dL, p = 0.006, B), higher D-dimer (744.8 ±  
± 579.1 vs. 1,525.5 ± 1,559.7 ng/mL, p = 0.040, C), and higher C-reactive protein (CRP; 0.7 ± 0.7 vs. 2.6 ± 2.7 mg/dL,  
p = 0.007, D) levels than values in L/I-risk group; E. Linear relationship between NT-proBNP and homocysteine;  
F. Linear relationship between NT-proBNP and uric acid; G–I. Panels demonstrated that patients with pulmonary 
hypertension in hyperhomocysteinemia groups had a higher risk level. The best cut-off value acquired from re-
ceiver operating characteristic analysis was homocysteine = 12 µmol/L; G. Hyperhomocysteinemia (homocysteine  
> 12 µmol/L) could discriminate high-risk levels from L/I risk levels in pulmonary hypertension, with more high-risk 
patients (≤ 12:18.8%; > 12: 70.6%, p = 0.003) in patients with hyperhomocysteinemia; H. Patients with homocysteine  
> 12 µmol/L had higher NT-proBNP (803.0 ± 1,165.4 vs. 4,057.7 ± 5230.9 pg/mL, p = 0.021); I. Lower diffusing capac-
ity for carbon monoxide (DLCO) (64.6 ± 24.6 vs. 44.2 ± 25.4% predicted, p = 0.045) was reported in patients with 
hyperhomocysteinemia.
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Table 2. Univariate logistic regression analyses of predictive factors for high-risk level in pulmonary 
hypertension.

Variables B Standard  
error

Odds  
ratio

95% confidence 
interval

P  
value

Female 0.46 0.79 1.587 0.335–7.530 0.561

Age [years] 0.04 0.02 1.039 0.993–1.086 0.100

Body surface area [m2] 0.91 1.37 2.477 0.170–36.118 0.507

Height [cm] 0.03 0.03 0.972 0.920–1.027 0.306

Weight [kg] 0.02 0.02 1.025 0.990–1.060 0.161

Heart rate [bpm] 0.01 0.02 1.009 0.971–1.048 0.659

Mean arterial pressure [mmHg] 0.00 0.02 1.002 0.956–1.051 0.919

Hematology tests:

White blood cells [K/µL] 0.00 0.13 1.001 0.775–1.294 0.993

Red blood cells [M/µL] 0.15 0.40 1.156 0.532–2.512 0.714

Hemoglobin [g/dL] 0.01 0.17 1.005 0.728–1.388 0.976

Red blood cell volume distribution [%] 0.05 0.07 1.047 0.919–1.192 0.493

Platelet [K/µL] 0.01 0.00 0.993 0.986–1.001 0.071

Neutrophil [%] 0.03 0.03 1.035 0.983–1.089 0.192

Lymphocyte [%] 0.06 0.03 0.947 0.893–1.003 0.063

Neutrophil/Lymphocyte ratio 0.26 0.17 1.290 0.922–1.805 0.137

Prothrombin time [s] 0.32 0.19 1.370 0.941–1.995 0.100

Partial thromboplastin time [s] 0.01 0.05 0.986 0.893–1.088 0.775

Biochemistry panel:

Na [mmol/L] 0.20 0.11 0.822 0.667–1.011 0.064

Estimated GFR [mL/min/1.73 m2] 0.03 0.02 0.973 0.945–1.003 0.074

Aspartate aminotransferase [U/L] 0.01 0.02 0.989 0.955–1.024 0.541

Alanine aminotransferase [U/L] 0.00 0.02 0.996 0.963–1.031 0.835

Alkaline phosphatase [U/L] 0.02 0.01 1.019 0.995–1.043 0.127

Total bilirubin [mg/dL] 0.62 0.53 1.852 0.658–5.214 0.243

Albumin [g/dL] 0.94 0.54 0.392 0.135–1.138 0.085

Lactate dehydrogenase [U/L] 0.00 0.01 1.000 0.989–1.010 0.925

Lipid profile:

High-density lipoprotein [mg/dL] 0.01 0.02 0.986 0.952–1.022 0.441

Low-density lipoprotein [mg/dL] 0.00 0.01 1.003 0.983–1.025 0.744

Total cholesterol [mg/dL] 0.01 0.01 0.988 0.971–1.005 0.162

Triglyceride [mg/dL] 0.01 0.01 0.991 0.979–1.004 0.190

Circulating biomarkers:

Angiopoietin-2 0.00 0.00 1.000 1.000–1.000 0.765

BMP-2 6.15 6396.08 0.002 0.000–0.000 0.999

BMP-4 0.90 0.49 2.467 0.945–6.439 0.065

CD40 0.00 0.00 1.000 0.999–1.001 0.797

Endoglin 1.00 1.00 1.000 0.999–1.002 0.449

Interlukin-6 0.07 0.09 1.067 0.900–1.266 0.453

Myeloperoxidase 0.00 0.00 1.000 1.000–1.000 0.908

Osteopontin 0.00 0.00 1.000 1.000–1.000 0.360

VEGF 0.00 0.00 1.000 1.000–1.000 0.360

Homocysteine [µmol/L] 0.26 0.10 1.293 1.054–1.586 0.014

von Willebrand factor [%] 0.00 0.01 1.001 0.988–1.014 0.886

Uric acid [mg/dL] 0.41 0.17 1.509 1.088–2.094 0.014

D-dimer [ng/mL] 0.00 0.00 1.001 1.000–1.002 0.058
→
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Table 3. Multivariate logistic regression analyses of predictive factors for high-risk level in pulmonary 
hypertension.

Variables B SE OR 95% CI P value

Homocysteine [µmol/L] 0.20 0.10 1.256 1.002–1.574 0.048

Uric acid [mg/dL] 0.30 0.20 1.338 0.834–2.147 0.227

FEV1 (L) –1.00 0.60 0.378 0.120–1.193 0.097

CI — confidence interval; FEV1 — forced expiratory volume in first second; OR — odds ratio; SE — standard error

Variables B Standard  
error

Odds  
ratio

95% confidence 
interval

P  
value

LVEF [%] –0.07 0.09 0.935 0.790–1.106 0.431

Peak tricuspid regurgitation peak gradient [mmHg] 0.02 0.02 1.022 0.992–1.053 0.152

Pulmonary function tests:

Total lung capacity [L] –0.24 0.42 0.787 0.348–1.783 0.566

FEV1 –1.12 0.50 0.328 0.122–0.880 0.027

FEV1/FVC (% predicted) 0.01 0.03 1.013 0.957–1.073 0.654

Diffusing capacity for carbon monoxide (% predicted) –0.02 0.02 0.981 0.953–1.011 0.218

BMP — bone morphogenetic protein; CD40 — cluster of differentiation 40; FEV1 — forced expiratory volume in first second; GFR — glomeru-
lar filtration rate; LVEF — left ventricular ejection fraction; VEGF — vascular endothelial growth factor

Table 2 (cont.). Univariate logistic regression analyses of predictive factors for high-risk level  
in pulmonary hypertension.

Table 4. The correlation between N-terminal prohormone of brain natriuretic peptide and circulating 
biomarkers.

Variables Unstandardized coefficient P value

B Standard error β

Angiopoietin-2 [pg/mL] –0.04 0.11 –0.05 0.759

BMP-2 [pg/mL] –287.03 442.25 –0.28 0.545

BMP-4 [pg/mL] 921.35 591.51 0.26 0.129

CD40 [pg/mL] 0.18 0.65 0.04 0.783

Endoglin [pg/mL] 0.02 1.17 0.00 0.988

Interlukin-6 [pg/mL] –51.42 120.84 –0.06 0.672

Myeloperoxidase [pg/mL] –0.04 0.35 –0.02 0.905

Osteopontin [pg/mL] 0.00 0.02 0.00 0.978

VEGF [pg/mL] –18.76 36.81 –0.07 0.613

Homocysteine [µmol/L] 489.53 77.85 0.75 < 0.001

Uric acid [mg/dL] 750.24 233.61 0.44 0.002

BMP — bone morphogenetic protein; CD40 — cluster of differentiation 40; VEGF — vascular endothelial growth factor

p = 0.021, Fig. 1H) and lower diffusing capacity for 
carbon monoxide (DLCO) (64.6 ± 24.6 vs. 44.2 ±  
± 25.4% predicted, p = 0.045, Fig. 1I). 

The MCT-rat model was obtained successfully 
and reflected by the elevated right ventricular sys-

tolic pressure (21.4 ± 3.0 vs. 44.8 ± 9.0 mmHg,  
p = 0.001, Fig. 2B) and right ventricular hypertro-
phy (Fultons’s index: 25.2 ± 2.8 vs. 49.1 ± 12.5%, 
p = 0.003, Fig. 2C) indicated by a significantly 
increased Fultons’s index. MCT rats demonstrated 
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Figure 2. Hemodynamic measurements, histology, immunohistochemical analysis of pulmonary arteries in monocro-
taline (MCT) rats; N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) and homocysteine levels between 
control and MCT-induced pulmonary hypertensive rats. Rats were treated with MCT (60 mg/kg) for 28 days (n = 7 per 
group), and blood sampling was obtained from the tail vein of rats. Compared to rats treated with phosphate-buffered 
saline (PBS), rats treated with MCT (60 mg/kg) for 28 days (n = 5 per group) had similar left ventricular systolic 
pressure (LVSP) (A), but elevated right ventricular systolic pressure (RVSP) (B) and elevated Fulton’s index (FI) with  
a higher ratio of right ventricular (RV) weight to left ventricular (LV) plus septal weight (RV/LV+S) (C). Elastica van 
Gieson staining revealed increased muscularization (E) and occluded pulmonary arteries in MCT-induced rats com-
pared to the control group (D). Immunofluorescence staining of alpha-smooth muscle actin in lung sections from 
MCT-treated rats (G) demonstrated proliferated pulmonary arterial smooth muscle cells compared to PBS rats (F). 
NT-proBNP (H) and homocysteine (I) values were elevating with the severity of pulmonary hypertension by weeks. 
There were significant differences of NT-proBNP (p = 0.0406) and homocysteine (p = 0.0411) values with increasing 
severity of pulmonary hypertension by weeks following MCT infusion; *,#: ANOVA with post-hoc least significant dif-
ference test revealed a statistical difference between the marked groups.
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the elevation of NT-proBNP (Fig. 2H) and homo-
cysteine (Fig. 2I) levels with progressed severity 
of pulmonary hypertension by weeks. Comparative 
association of NT-proBNP and homocysteine level 
between MCT rats and humans by disease severity 
were illustrated in Figure 3A–D. In addition, differ-
ent biomarker combinations and the comparison 
between respective predictive value of each model 
were illustrated in Figure 3E. NT-proBNP + ho-
mocysteine + UA had strongest predictive value  
(AUC = 0.898), following by NT-proBNP + homo-
cysteine (AUC = 0.890), NT-proBNP + UA (AUC =  
= 0.871), NT-proBNP (AUC = 0.867), homocys
teine (AUC = = 0.835), and then UA (AUC = 0.698).

Discussion

This study aimed to identify potential bio-
markers correlated and comparable to the current 
guidelines recommending NT-proBNP. A higher 
homocysteine level was an independent predictor 
for high-risk levels, and it showed a linear correla-
tion with NT-proBNP. Further analysis indicated 

that the most appropriate cut-off value of homo-
cysteine for risk level discrimination of pulmonary 
hypertension was homocysteine = 12 µmol/L. 

The rationale for exploring biomarkers 
compatible and comparable with  
NT-proBNP

There was no single attribution of regulators 
or signaling molecules has adequate capacity to 
estimate the risk [6, 7, 14]. Currently, both the 
U.S. REVEAL risk score and the ESC/ERS guide-
lines are the most widely used multidimensional 
tools for risk assessment [13]. Among these, right 
heart catheterization is the only test to obtain the 
precise hemodynamic parameters for diagnosis 
and therapies [5]. 

Surprisingly, a previous study reported that 
BNP or NT-proBNP had a 98% sensitivity for 
excluding high right atrial pressure (≥ 8 mmHg) 
and low cardiac index (< 2.5 L/min/m2), and in 
circumstances of extreme low BNP (< 50 pg/mL)  
or NT-proBNP (< 300 pg/mL) level, hemodynamic 
measurements no longer had independent prog-

Figure 3. Comparative association of N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) and ho-
mocysteine level between monocrotaline (MCT) pulmonary arterial hypertension (PAH) rats and PAH humans by 
disease severity. The PAH severity progressed by weeks for MCT rats; A. NT-proBNP level of MCT rats by weeks 
demonstrated higher NT-proBNP by progressed severity (p = 0.026); B. NT-proBNP level of PAH humans by severity. 
There was a higher NT-proBNP level in the high-risk group than in the low/intermediate (L/I) risk group (p = 0.002);  
C. Homocysteine level of MCT rats by weeks. Higher homocysteine level was demonstrated in 3 and 4 weeks MCT rats 
compared with the values in first 2 weeks (p = 0.012); D. Homocysteine level of PAH humans by severity. There was 
higher homocysteine value of high-risk patients than in the low/intermediate (L/I) group (p = 0.005); E. Different bio-
marker combinations and the comparison between respective predictive value of each model were illustrated. The ar-
eas under the curves (AUC) were calculated. NT-proBNP + homocysteine (HS) + uric acid (UA) had strongest predic-
tive value (AUC = 0.898), following by NT-proBNP + HS (AUC = 0.890), NT-proBNP + UA (AUC = 0.871), NT-proBNP  
(AUC = 0.867), HS (AUC = 0.835), and then UA (AUC = 0.698); PBS — phosphate-buffered saline; w — weeks.
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nostic predictive values [14]. Moreover, COM-
PERA and the SPAHR registries demonstrated 
that the ability of mortality prediction is excellent 
even when only about a third of patients are fol-
lowed up under the assessment of right heart 
catheterization [15, 18]. Nevertheless, due to the 
complexity of pulmonary hypertension, any single 
biomarker is insufficient for the broad assessment 
of patients with different etiologies of pulmonary 
hypertension. This study aimed to explore poten-
tial biomarkers compatible and comparable with 
NT-proBNP for disease follow-up.

The investigations of novel biomarkers  
and application of homocysteine for PAH 
risk assessment 

The investigations of novel biomarkers, such 
as angiopoietin-2, BMP-2, BMP-4, CD40, endoglin, 
interlukin-6, myeloperoxidase, and osteopontin are 
currently in progress [7, 19, 20]. Angiopoietin-2 
is produced by vascular smooth muscle cells and 
is involved in vascular damage/remodeling, and 
expression of angiopoietin-2 was up-regulated in 
plexiform lesions PAH lung tissues [21]. BMP-2 
and BMP-4 exert opposing roles in the hypoxic 
pulmonary vasculature mediated by increasing 
endothelial nitric oxide synthase expression and 
activity, and BMP-2 has suggested protective 
effect [22, 23]. CD40 is a type I transmembrane 
receptor and one of the members of the tumor 
necrosis factor superfamily, which is expressed 
on epithelial cells, fibroblasts, endothelia cells, 
vascular smooth muscle cells, and platelets. The 
expression of CD40 promotes pro-thrombotic and 
pro-inflammatory effects, and is associated with 
systemic sclerosis and PAH [24, 25]. Endoglin and 
VEGF are angiogenic modulatory factors [26, 27]. 
Interlukin-6 is associated with vascular remodeling 
and development of PAH, which is able to predict 
poor adverse outcomes within the following year 
[28, 29]. Myeloperoxidase is able to reduce the 
bioavailability of nitric oxide, which is an important 
anti-inflammatory and vasodilating molecule. It 
also predicts outcomes in patients with PAH [30]. 
Osteopontin is involved in tissue remodeling, in-
flammation, and metastasis, which is recognized in 
cardiomyocytes and fibroblasts. Previous studies 
supported its correlation with mPAP, NT-proBNP, 
6MWD and function class [31–33]. Bonferroni 
correction was applied for analysis of multiplex 
immunoassay biomarkers (Suppl. Table S1); 
despite having no significant statistical difference 
between low-, intermediate- and high-risk groups, 
the increased trend by disease severity was dem-

onstrated. The insignificance could be attributed 
to the small sample size. 

This study demonstrated that patients in 
high-risk group for pulmonary hypertension had 
higher homocysteine, UA, D-dimer, and CRP 
base on univariate analysis (Table 2). However, 
multivariate logistic regression analysis demon-
strated that homocysteine (OR: 1.256; 95% CI: 
1.002–1.574, Table 3) was the only independent 
predictor for high-risk levels. In addition, studies 
in animals and in cell cultures also demonstrated 
that homocysteine has a variety of toxic effects on 
the vasculature, endothelial dysfunction, medial 
remodeling and adventitial inflammation [34–41] 
which supports the result of serum homocysteine 
level of MCT rats in the present study. 

In comparison with angiopoietin-2, BMP-2, 
BMP-4, CD40, endoglin, interlukin-6, myeloperoxi-
dase, and osteopontin, which need to be acquired 
by multiplex immunoassay of human blood and 
were not feasible in clinical tests, homocysteine 
is available in daily clinical care. Furthermore, 
homocysteine impairs endothelium-dependent va-
sodilatation and is an endogenous inhibitor of nitric 
oxide synthase. Moreover, increased homocysteine 
level in PAH was also reported in a previous study 
[42–44]. In addition, comparison between each 
model illustrated in Figure 3E reported higher 
predictive value of homocysteine (AUC = 0.835) 
compared to uric acid (AUC = 0.698). Therefore, 
homocysteine rather than other biomarkers was 
selected for final advanced analysis under the 
consideration of multivariate analysis and clinical 
feasibility compared to other biomarkers.

Correlation between homocysteine and  
NT-proBNP, and application of homocysteine 
for follow-up of pulmonary hypertension 

Homocysteine interferes with the expression 
of endothelial nitric oxide synthetase, with which 
its multifactorial attributions increase vascular 
thickness and activate elastin fragmentation, which 
eventually leads to PAH [8, 45]. Pulmonary hyper-
tension can develop rapidly under hypoxic situa-
tions, and hyperhomocysteinemia was reported in 
cyanotic PAH patients compared to non-cyanotic 
patients [42–44]. A low DLCO could be seen in 
patients with primary pulmonary hypertension and 
other pulmonary vascular diseases with or without 
the restriction of lung volumes [46]. Moreover, 
lower DLCO (< 45%) was demonstrated in PAH 
patients with lower arterial oxygen tension [47]. 
Low DLCO was also an index of worse prognosis, 
a strong and independent risk factor for survival 
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in patients with pulmonary hypertension [48–50]. 
Hyperhomocysteinemia is an index for hypoxia 
and low DLCO [51]. This study reported that 
higher homocysteine group had more high-risk 
level patients (≤ 12 µmol/L: 18.8%; > 12 µmol/L: 
70.6%, p = 0.003, Fig. 1G), and higher NT-proBNP  
(803.0 ± 1,165.4 vs. 4,057.7 ± 5,230.9 pg/mL,  
p = 0.021, Fig. 1H). This result supported the  
possibility of using homocysteine for disease  
follow-up.

A previous study demonstrated that higher 
homocysteine levels were correlated with higher 
concentrations of NT-proBNP when the differ-
ences were assessed in comparison with the up-
per quartile (≥ 18 μmol/L) with the lower quartile  
(≤ 12 μmol/L) [52]. Hyperhomocysteinemia predict-
ed high NT-proBNP values via a link with impaired 
mitochondrial fatty oxidation [52]. Furthermore, 
homocysteine was one of the determinants of 
natriuretic peptide which was analyzed by univari-
ate analyses [52]. Association between the log of 
plasma concentration of homocysteine and BNP 
was demonstrated with a correlation coefficient of 
+0.297 (95% CI: +0.097–+0.474, p = 0.004) [52]. 
In addition, homocysteine was reported to stimulate 
myocardial BNP and induce adverse left ventricular 
remodeling [53]. However, studies describing the 
correlation between homocysteine and NT-proBNP 
through a link with pulmonary hypertension are 
rare. This study showed that homocysteine had  
a linear correlation with NT-proBNP levels (β = 0.75,  
p < 0.001, Fig. 1E). The 1-year mortality was < 5%, 
5–20%, and > 20% if NT-proBNP values are < 200, 
300–1100, > 1100 pg/mL illustrated in 2022 ESC 
guideline [1]. As long as the biomarker identified 
had a good correlation with NT-proBNP, it was able 
to represent the estimated 1-year mortality as well 
as NT-proBNP does. 

With regard to the use of homocysteine for 
pulmonary hypertension follow-up or severity 
evaluation, the current study demonstrated that 
hyperhomocysteinemia was present in pulmonary 
hypertension associated with the congenital heart 
disease group compared to the non-pulmonary 
hypertension group [42]. In addition, elevated to-
tal plasma homocysteine was reported in primary 
pulmonary hypertension patients compared to 
the control group (14.7 ± 7.2 vs. 10.2 ± 5.1, p =  
= 0.027), with the cut-off value of 15 µmol/L [54]. 
Hyperhomocysteinemia is a crucial factor in the 
pathogenesis of primary pulmonary hypertension 
as well as poor renal function [54]. These results 
support the present study, that a higher homo-
cysteine value was reported in the high-risk group 

compared to the low/intermediate-risk group, and 
the most appropriate cut-off value based on ROC 
analysis was homocysteine = 12 µmol/L. In light 
of the small sample size of this study and ethical 
consideration, the present study used MCT in-
duced PAH rats to evaluate the accessibility and 
reliability of using homocysteine to predict PAH 
risk level. The result proved a comparative associa-
tion between disease severity and homocysteine 
level, which were demonstrated both in rats and 
humans (Fig. 3A–D).

Limitations of the study
Individual differences of metabolism and in-

creased lipid profiles may interfere with homo-
cysteine values. In addition, the acquisition of 
blood samples depends on the interval between 
application and permission. Blood samples of the 
present study were stored for an average of be-
tween 2 weeks and 1 month. The half-life of each 
biomarker and accuracy might affect the results 
of measurement. However, this was restricted by 
experimental accessibility and was a limitation of 
the present study. In addition, the small sample size 
of this study limits the reliability of the application 
of homocysteine as an index of risk assessment. 
Further investigation is needed to validate this 
study’s result. 

Study strength
Previous studies have illustrated the corre-

lation between hyperhomocysteinemia and high 
NT-proBNP value via a link with impaired mito-
chondrial fatty oxidation. However, the correlation 
between homocysteine and NT-proBNP through 
a link with pulmonary hypertension has been 
obscured. Based on previous evidence, hyperho-
mocysteinemia were related with hypoxia-induced 
pulmonary vascular constriction and pulmonary 
hypertension. This study demonstrated that homo-
cysteine had a linear correlation with NT-proBNP. 
These results posed a potential new circulating 
biomarker to achieve more accurate risk assess-
ment of pulmonary hypertension.

Conclusions

This study demonstrated that patients with 
higher homocysteine levels had higher risk levels, 
higher NT-proBNP levels, and lower DLCO. This 
study also delineated a linear correlation between 
homocysteine and NT-proBNP levels. In summary, 
homocysteine can help discriminate between low/ 
/intermediate and high-risk groups. It is a potential 
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biomarker that could be compatible and comparable 
with NT-proBNP as a non-invasive and effort-free 
measurement for risk assessment and disease 
follow-up in pulmonary hypertension.
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