Congenital absence of the pericardium: A rare cause of right ventricular dilatation and levoposition of the heart

Erkan İlhan¹, Şennur Ünal Dayi¹, Tolga Sinan Güvenç¹, Servet Altay¹, Memduh Dursun², Erdinç Hatipsoylu¹, Gülşah Tayyareci¹

¹Department of Cardiology, Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
²Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Turkey

Abstract

Congenital absence of the pericardium is a rare cardiac defect with variable clinical presentations and is usually discovered incidentally. The pathology may lead to serious complications such as incarceration of cardiac tissue, myocardial ischemia, aortic dissection or valvular insufficiency. Diagnosis is not difficult so long as some tips are remembered. We present the cases of two patients with congenital absence of left pericardium. (Cardiol J 2012; 19, 4: 408–411)

Key words: congenital absence of the pericardium, levoposition

Introduction

Congenital absence of the pericardium (CAP) is a rare cardiac defect with a wide spectrum of clinical presentation. Sudden death, incarceration of cardiac tissue, myocardial ischemia and aortic dissection are the most serious complications. Awareness of some clues to the pathology related to chest X-ray and transthoracic echocardiography (TTE) will increase the number of patients diagnosed with this condition. We present two patients with complete absence of left side of the pericardium, of whom levoposition of the heart and right ventricular dilation were the first presenting findings.

Case reports

Case 1

A 26 year-old man with no past medical history was admitted to the cardiology department complaining of a non-exertional stabbing chest pain. ECG showed incomplete right bundle branch block and poor precordial R wave progression and minimal ST segment elevation in leads V1–V3 (Fig. 1). Physical examination was normal. Chest X-ray showed leftward position of the heart, flattening and elongation of the left heart border and a lucent area between the aorta and pulmonary artery (Fig. 2). On TTE, the right ventricle seemed enlarged and the pathognomonic appearance of a ‘teardrop heart’ could be seen (Fig. 3). There was also paradoxical septal motion of the interventricular septum. Therefore the patient was diagnosed with CAP. Thorax computed tomography (CT) and cardiac magnetic resonance imaging (MRI) confirmed the diagnosis and documented the extent of pathology (Figs. 4, 5). Stress echocardiography excluded possible pendulum-like motion of the heart.

Case 2

A 58 year-old woman with no past medical history was admitted to the cardiology department...
Figure 1. 12-lead ECG showing relatively prominent P-waves in the mid-precordial leads (arrows).

Figure 2. Chest radiograph showing leftward position of the heart, flattening and elongation of left heart border (so-called ‘Snoopy sign’), and a lucent area between the aorta and pulmonary artery due to lung interposition (white arrow).

Figure 3. Transthoracic echocardiogram apical four-chamber view showing lateral displacement of the apex and enlarged right ventricle; LA — left atrium; LV — left ventricle; RA — right atrium; RV — right ventricle.

Figure 4. A. Transverse thorax computed tomography (CT) image showing dilatation of the right ventricle and levoposition; B. Transverse thorax CT image at the level of the aorto-pulmonary window showing interposition of lung tissue between the aorta and main pulmonary artery (arrow) which is pathognomonic for absence of pericardium in this region; LA — left atrium; LV — left ventricle; RA — right atrium; RV — right ventricle; Ao — aorta; PA — pulmonary artery.
Apart from the mentioned complications such as incarceration of cardiac tissue, myocardial ischemia, aortic dissection or valvular insufficiency. Therefore detection of this malformation is clinically important [6, 8–11]. The functional capacity of our patients was normal and we did not detect any compression of the great arteries, coronary arteries or incarceration of cardiac structures. So, we adopted a conservative approach.

The ECG may reveal bradycardia, right bundle branch block, poor R-wave progression secondary to leftward displacement of the precordial transitional zone, and prominent P-waves in the mid-
Erkan Ilhan et al., Congenital absence of the pericardium

precordial leads that indicate right atrial overload [7]. However, TTE is the main tool when this diagnosis is suspected [12]. The characteristic echocardiographic features of this entity are unusual echocardiographic windows, cardiac hypermobility, abnormal ventricular septal motion and an abnormal swinging motion of the heart [7]. Detection of one of these should suggest a diagnosis of CAP. In our cases, the diagnosis was suggested by levoposition of the heart with laterally displaced parasternal windows, and a ‘teardrop heart’ secondary to the absence of normal tethering and shaping forces applied by the normal pericardium.

Normally, the aortopulmonary window is covered by the pericardium, and absence of the pericardium at this region allows interposition of lung tissue between the aorta and the main segment of the pulmonary artery. Although chest X-ray may show some evidence, CT or MRI defines the aortopulmonary window clearly [13, 14]. MRI provides excellent images of the entire pericardium and MRI is a useful diagnostic tool for establishing the extent of pericardial defect [15].

Complete cases require no intervention unless complications occur. Patients with debilitating symptoms may benefit from pericardioplastic surgery [1]. However, in partial defects, when herniation occurs or is threatened, extension of the defect by pericardectomy/pericardioplastic may be performed. Excision of the left atrial appendage may be necessary if it herniates.

In conclusion, congenital absence of the pericardium should be suspected when the characteristic echocardiographic features are present.

Conflict of interest: none declared

References

www.cardiologyjournal.org