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ABSTRACT

Background:  Cardiac  arrest  in  children  is  associated  with  high  morbidity  and  mortality,

primarily  due  to  neurological  injury.  Biomarkers  linked  to  brain  injury,  released  into

circulation  from  compromised  elements  of  the  neurovascular  unit,  act  as  significant

prognostic  indicators  in  patients  suffering  from  hypoxic-ischemic  brain  injury  (HIBI)

subsequent to the restoration of spontaneous circulation (ROSC) after pediatric cardiac arrest.

The aim of this systematic review and meta-analysis is to evaluate the prognostic utility of

brain injury biomarkers in predicting neurological outcomes and survival in patients following

cardiac arrest in the pediatric population.

Methods:  Bibliographic  databases  (PubMed,  the  Cochrane  Library,  and  Embase)  were

searched from their inception to November 2024. A random-effect model was used for all

analyses. 
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Results: Our meta-analysis demonstrates significant associations between various biomarkers

and survival or neurological outcomes after cardiac arrest.  Neuron-specific enolase (NSE)

levels were consistently elevated in non-survivors and patients with unfavorable neurological

outcomes,  with  pronounced  differences  observed  on  Days  2  and  3  (e.g.,  Day  3  mean

difference: –88.48, 95%CI: –146.77 to –30.19, P = 0.003). Emerging biomarkers, including

UCH-L1 and GFAP, showed striking differences, such as elevated UCH-L1 levels on Day 1

(mean  difference:  –415.41,  95%CI:  –474.41  to  –356.61,  P <  0.001)  and  GFAP  levels

exceeding 4000 ng/mL in non-survivors on Day 2 (P < 0.001).

Conclusions:  Our  findings  underscore  the  significant  prognostic  value  of  biomarkers  in

predicting  survival  and  neurological  outcomes  following  cardiac  arrest.  Neuron-specific

enolase  (NSE)  consistently  demonstrated  its  reliability  across  multiple  time  points,  while

emerging biomarkers like UCH-L1 and GFAP showed promising potential for early outcome

stratification. 

Keywords:  brain markers; neuron-specific enolase; S100β protein; survival; cardiac arrest;

meta-analysis

Introduction

Cardiac arrest in pediatric patients presents a substantial clinical challenge, characterized by a

high death rate and a considerable risk of enduring neurological impairment [1]. The primary

pathophysiological  process  resulting  in  these  sequelae  is  hypoxic-ischemic  brain  injury

(HIBI) [2, 3]. HIBI, resulting from hypoxia and reperfusion, induces intricate biochemical

alterations  including  excitotoxicity,  oxidative  stress,  inflammation,  and  disruption  to  the

blood-brain barrier. A timely and accurate evaluation of neurological prognosis in this patient

cohort is essential for appropriate therapeutic management, facilitating challenging decisions

regarding treatment intensity and aiding families in the caregiving process and acceptance of

possible clinical outcomes [4, 5].

The pediatric population presents distinct diagnostic and treatment issues owing to its unique

developmental characteristics and restricted capacity for accurate clinical assessment. Factors

such  as  anesthesia,  intubation,  and  the  absence  of  definitive  reference  standards  for  the

maturing nervous system sometimes impede conventional evaluation techniques,  including

neurological examination and neuroimaging, in this  demographic [6].  As a result,  there is

increasing interest within the scientific community in neurodegenerative biomarkers that can
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offer  objective  and  readily  interpretable  data  regarding  brain  damage  and  neurological

prognosis.

In pediatric cardiac arrest investigations, neuron-specific enolase (NSE), S100β protein, glial

fibrillary acidic protein (GFAP), and neurofilament light (NFL) are emerging as some of the

most  clinically  significant  neurological  biomarkers.  NSE,  a  distinct  indicator  of  neuronal

injury,  correlates  closely  with  the  extent  of  cerebral  damage,  whereas  S100β,  linked  to

astrocytes,  signifies  blood-brain barrier  impairment  and inflammatory activation.  GFAP, a

marker  of astrocytes,  signifies structural glial  injury,  while NFL, found in axons,  denotes

damage to white matter [7–10].

Research demonstrates differing prognostic significance of various indicators in neurological

evaluation. Hoiland et al. illustrated the significant predictive capacity of NFL in assessing

neurological prognosis in adult patient’s post-cardiac arrest,  especially within the 48 hours

following the restoration of spontaneous circulation (ROSC) [11]. On the other hand, research

by  Fink  et  al.  highlighted  the  usefulness  of  UCH-L1  and  GFAP  in  pediatric  cases,

emphasizing  their  importance  in  identifying  individuals  with  unfavorable  neurological

outcomes  [8].

Despite encouraging outcomes, limited sample sizes and methodological variability among

studies frequently constrain the existing data. The diversity of methods employed, variations

in sample intervals, and the absence of standardized cutoff values for biomarkers impede the

interpretation of results  and their  therapeutic utility.  Thus,  there is  a distinct necessity for

thorough meta-analyses to consolidate the existing data and develop pragmatic suggestions

for practitioners. 

This meta-analysis aims to assess the clinical efficacy of neurodegenerative biomarkers in

forecasting survival and neurological outcomes in pediatric patients following cardiac arrest.

Methods

We conducted this systematic review in accordance with the preferred reporting items for

systematic reviews and meta-analyses (PRISMA) guidelines [12]. The protocol was registered

at  the  International  Prospective  Register  of  Systematic  Reviews  (PROSPERO),  with  the

identification  code:  CRD42024614708.  Given  the  methods  of  this  investigation,  Ethics

Committee approval was not required.

Data sources and search strategy

A systematic literature search was performed in PubMed, the Cochrane Library, and Embase

databases  from inception to  November 2024 according to  the guidelines of  the Cochrane
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Collaboration.  Keywords  used  to  identify  relevant  studies  were  as  follows:  “ubiquitin

carboxyl hydrolase L1” OR “UCH-L1” OR  “neuron specific enolase” OR “NSE” OR  “S100

beta” OR “S100 calcium” OR “S100 calcium binding protein” OR  “neurofilament-light” OR

“Nf-L” OR “NFL” OR “glial fibrillary protein” OR “GFAP” OR “Tau” AND “cardiac arrest”

OR “out-of-hospital cardiac arrest” OR “OHCA” OR “In-hospital cardiac arrest” OR “heart

arrest”  OR “cardiopulmonary resuscitation” OR “CPR” OR “sudden cardiac  death”  AND

“pediatric*” OR “paediatric*” OR “child*”. We did not restrict the publication year as long as

the record was accessible in the database; however, we limited the search to human studies

and articles authored in English. We also examined the reference lists of all included research,

prior meta-analyses, and Google Scholar to ensure we did not overlook any eligible studies.

We exported the search results to EndNote X9 software (USA) for processing.

Study selection

Studies were included according to the following inclusion criteria: 

1) target  population:  human children between the ages  of  1  week and 17 years  with

cardiac arrest; 

2) outcomes: UCH-L1, NSE, NFL, S100B, GFAB, and Tau in the survive vs. decreased

groups,  or  among  patients  with  favorable  vs.  unfavorable  neurological  outcome

groups; 

3) article  types:  any  type  of  research  articles,  excluding  case  reports,  reviews,  and

conference abstracts; 

4) language restriction: only articles that were written in English. 

We excluded duplicate  research  or  numerous  publications  of  the  same study,  non-patient

studies, and studies with inaccessible data.

Data extraction

For eligible studies, two researchers independently screened the title, abstract, and full text

according to predetermined criteria and recorded data in prepared Excel sheets. We resolved

any disagreements by discussing with each other or consulting with a third investigator. We

extracted the following data  from each included study:  study characteristics  (study name,

author,  publication  year,  country)  and  study  group  information  (numbers,  mean  age  at

sampling,  mean and standard deviation of biomarkers).  For publications lacking sufficient

information on predictive accuracy to calculate the 2 × 2 contingency tables, we asked the

corresponding authors for help via email first and then excluded those studies if we received

no response after sending a second email.

 Quality assessment 
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We assessed the methodological quality of included studies using the Newcastle-Ottawa Scale

(NOS) [13]. This meant checking whether the following things were true for case-control

studies: 

1) correct case definition  

2) cases that were representative of the whole population 

3) choice of control

4) definition of control

5) comparability of case and control groups

6) exposure

7) whether exposure methods were the same for cases and controls

8) non-response rate 

A study with a total score of 7 or higher was considered to have a low likelihood of bias.

Otherwise, we judged a study with a total score of 6 or less to be biased and removed it from

our analysis. Two independent authors (HK and MZ) assessed the quality of the included

studies using the remaining nine assessment. Quality rating disagreements were resolved by

discussion among all authors.

Data synthesis and meta-analysis

We conducted statistical  analysis  using STATA (Software for Statistics and Data Science)

version 17.0. The effect size of this meta-analysis was expressed as mean differences (MDs)

with 95% confidence intervals (CIs). In the case of continuous outcomes, data were reported

as median, range, and interquartile range, and we estimated means and standard deviations

using the formula described by Hozo et al. [14]. We used Q values and I2 to test heterogeneity,

and P < 0.10 was considered to indicate heterogeneity between combined studies. We deemed

a P value < 0.10 to be indicative of heterogeneity among the aggregated studies. Furthermore,

the  interpretation  of  the  I2 statistic  adhered  to  Cochrane  recommendations,  categorizing

heterogeneity as low (25%), moderate (50%), and high (75%) [15]. If we observed significant

heterogeneity, we used a sensitivity analysis that applied the leave-one-out method to identify

the  study that  contributed  to  the  heterogeneity.  We assessed  publication  bias  by  visually

inspecting funnel plots and using Egger's test for meta-analyses with more than 10 included

studies. All statistical analyses were two-sided, with a P-value < 0.05 indicating statistical

significance.

Results

Overall summary of literature search 
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The PRISMA chart is presented in Figure 1. Searching multiple databases for titles, abstracts,

and keywords returned 371 publications; after deleting duplicates, 216 fulfilled the inclusion

and exclusion criteria. After abstract screening, 23 remined for full-text evaluations, and 12

were discarded at this level. Our meta-analysis ultimately included 11 papers [8, 10, 16–24],

of which 2 articles represented one study [8, 19]. All 11 papers scored ≥ 7 points on the NOS,

indicating high quality (Tab. 1). 

The characteristics of eligible studies are summarized in Table 1. The number of subjects in

the 10 studies ranged between 21 and 48, with a total sample size of 388 subjects. These

studies were from the USA (5 studies), Egypt (2 studies) and one study each from Germany,

Korea, and Denmark, with various years of publication spanning 2009–2023. 

Findings from meta-analysis

Our meta-analysis reveals significant associations between various biomarkers and survival or

neurological  outcomes after  cardiac  arrest  (Tab.  2,  3;  Fig.  2,  3).  Neuron-specific  enolase

(NSE) levels were consistently higher in patients who died or had unfavorable neurological

outcomes.  For  instance,  on  Day  3,  non-survivors  had  higher  NSE levels  (mean:  106.49

ng/mL) than survivors (mean: 23.11 ng/mL), with a mean difference of –88.48 (95%CI: –

146.77 to –30.19, P = 0.003). Similarly, higher NSE levels were observed in patients with

unfavorable neurological outcomes across multiple time points, particularly on Day 2 (mean

difference: –45.66, 95%CI: –59.35 to –31.98, P < 0.001).

For  S100B,  the  results  were  less  consistent.  Non-survivors  and  those  with  unfavorable

outcomes showed higher  levels,  but the heterogeneity was substantial.  On Day 1,  S100B

levels in survivors and non-survivors were very different (mean difference: –0.46, 95%CI: –

0.78 to –0.14, P = 0.005).

Emerging biomarkers, such as UCH-L1, GFAP, and tau, demonstrated potential utility, with

striking differences between groups. For instance, UCH-L1 levels on Day 1 were higher in

non-survivors (mean: 471.62 ng/mL) compared to  survivors (mean: 56.11 ng/mL),  with a

mean difference of  –415.41 ng/mL (95%CI:  –474.41 to  –356.61,  P < 0.001).  GFAP also

showed pronounced elevation in unfavorable outcomes, with levels exceeding 4000 ng/mL in

non-survivors on Day 2, compared to 197.78 ng/mL in survivors (mean difference: –4773.90

ng/mL, 95%CI: –5975.84 to –3571.96, P < 0.001).

Discussion

Our meta-analysis establishes that NSE levels are markedly higher in non-survivors than in

survivors,  exhibiting  a  gradual  rise  from Day  1  to  Day  3  following  cardiac  arrest.  This
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temporal trend underscores the significant correlation between increased NSE levels, death,

and  negative  neurological  consequences.  Patients  with  poor  neurological  prognoses

demonstrated a significant increase in NSE levels, highlighting its function as a marker of

neuronal damage. The results validate previous research by Fink et al. [19] and Topjian et al.

[24], which identified NSE as a dependable biomarker for neuronal injury and unfavorable

outcomes after cardiac arrest.  The biomarker’s specificity for neuronal tissue is due to its

release  into  the  circulation  following  neuronal  cell  death,  especially  under  ischemic  or

hypoxic settings.

Non-survivors and patients with unfavorable neurological outcomes consistently had elevated

S100B  concentrations,  particularly  on  Days  1  and  3.  These  findings  underscore  its

vulnerability to early neuronal and astrocytic injury and its function in indicating blood-brain

barrier  (BBB)  compromise.  This  corresponds  with  the  findings  of  Shinozaki  et  al.,  who

emphasized  the  significance  of  S100B  in  evaluating  blood-brain  barrier  integrity  and  its

prognostic implications in ischemic brain injury [25]. Although S100B elevation may partially

stem from extra-neural sources, such as peripheral tissue injury, its initial increase is a vital

marker for directing post-resuscitation management. We identified significant heterogeneity in

our data (up to 97%), suggesting that external variables may influence S100B levels, thus

necessitating careful interpretation.

NFL levels demonstrated variety among studies, with certain time points revealing substantial

variations, while others failed to attain statistical significance. Axonal injury generates NFL, a

cytoskeletal protein, which is associated with the extent of brain damage. Our data indicate

that NFL may possess superior prognostic significance for long-term neurological outcomes

compared to the acute phase following cardiac arrest. These data align with the findings of

Shahim et  al.,  who illustrated the efficacy  of  NFL in monitoring  disease  development  in

chronic neurological illnesses and protracted recovery situations [26].

Individuals with worse neurological outcomes, especially on Days 1 and 2, primarily showed

increased UCH-L1 levels.  Neuronal injury produces UCH-L1, a neuronal-specific enzyme

essential  for  maintaining  protein  homeostasis  in  neurons.  These  findings  align  with  prior

research, including that of Mondello et al., which demonstrated the significance of UCH-L1

in traumatic brain damage [27]. This meta-analysis reveals that, despite the limited number of

studies  on  UCH-L1,  its  consistent  trends  highlight  its  potential  as  an  early  prognostic

biomarker for neuronal injury in the contexts of ischemia and traumatic brain injury, including

cardiac arrest.
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The  levels  of  tau  protein  exhibited  a  high  correlation  with  poor  survival  and  negative

neurological outcomes, aligning with its recognized function as a marker of axonal injury.

Tau, a microtubule-associated protein, is released upon axonal injury, and its significance has

been thoroughly investigated in neurodegenerative diseases, including Alzheimer’s disease.

Our results correspond with those of El Husseini et al., who illustrated tau’s efficacy in both

acute and chronic neurological disorders [28]. Tau’s susceptibility to diffuse axonal injury

from hypoxic-ischemic encephalopathy renders it a useful biomarker for early prognostication

in cardiac arrest. Integrating tau into a multimodal biomarker panel with NSE and S100B may

improve prognostic precision.

Significantly increased GFAP levels were noted in patients with poor survival and adverse

neurological  outcomes,  indicating  its  specificity  as  a  biomarker  of  astroglia  damage.

Astrocytic destruction, especially during ischemic brain injury, releases GFAP, an essential

intermediate filament protein in astrocytes, into the bloodstream. These results support the

conclusions of Berger et al., who emphasized GFAP’s elevated sensitivity and specificity in

evaluating  the  severity  of  brain  injury.  Nonetheless,  discrepancies  in  test  methodologies,

patient demographics, and timing of sample acquisition may account for the outlier findings

noted in certain investigations.

Limitations

Our meta-analysis  has several limitations.  A key issue is the heterogeneity across studies,

which  stems  from  differences  in  methodologies,  such  as  study  design  (prospective  vs.

retrospective), sample sizes, and patient ages. These discrepancies constrain the comparability

of outcomes. A considerable number of the studies we examined had limited sample sizes,

diminishing both their statistical power and the capacity to identify meaningful relationships.

As a result, the findings from these tiny cohorts may lack generalizability to larger pediatric

or adult populations. A further issue is the possibility of research demographic bias, as most

studies concentrated on pediatric cardiac arrest cases managed in specialized or tertiary care

facilities, which may not accurately represent outcomes in general or resource-limited clinical

settings. The prevalence of single-center studies limits the generalizability of findings, as they

may not reflect outcomes across varied healthcare systems or populations. Finally, numerous

studies  concentrated  solely  on  specific  biomarkers,  such  as  NSE  and  S100B,  without

incorporating these results with additional clinical or imaging data, which may restrict their

predictive precision.  Mitigating these limitations in subsequent studies would improve the

reliability and utility of biomarker data in forecasting outcomes post-cardiac arrest.

Clinical implications
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The  temporal  dynamics  of  biomarkers  in  our  investigation  highlight  the  necessity  for

repetitive testing to  improve prediction accuracy.  Biomarkers,  including NSE and S100B,

which provide robust  early signals,  can inform immediate  post-resuscitation management,

while  GFAP and  Tau  may  better  reflect  long-term  outcomes.  The  significant  variation

identified in our meta-analysis highlights the necessity for consistent techniques in biomarker

sampling and reporting.

Conclusions

This meta-analysis presents fresh information regarding the significance of brain biomarkers,

including NFL and tau,  as predictive instruments in the clinical assessment of individuals

experiencing  cardiac  arrest.  These  findings  suggest  that  these  biomarkers  could  enhance

conventional  neurological  assessment  techniques,  thereby  improving  care  quality  for  this

patient demographic.
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Figure 2. Group differences in brain biomarkers between survivors and patients who died

(patients who survived [blue circles] and died [red squares]) outcomes at 0-, 24-, 48-, and 72-

hours after return of spontaneous circulation report the mean concentration and spread (SD).

Each graph notes the number of patients and studies included in determining the mean and

standard deviation for each point

A) Neuron-specific enolase: Y-axis: NSE [conc] (µg/L), X-axis: Hours from ROSC; B) S100

Calcium binding protein B:  Y-axis:  S100B [conc]  (µg/L),  X-axis:  Hours from ROSC;  C)

Neurofilament  light  chain:  Y-axis:  NFL [conc]  (pg/mL),  X-axis:  Hours  from ROSC;  D)

Ubiquitin  C-terminal  hydrolase L1:  Y-axis:  UCH-L1 [conc]  (pg/mL),  X-axis:  Hours  from

ROSC;  E) Tau protein:  Y-axis:  Tau [conc]  (pg/mL),  X-axis:  Hours from ROSC;  F) Glial

fibrillary acidic protein: Y-axis: GFAP [conc] (pg/mL), X-axis: Hours from ROSC

Figure  3. Group  differences  in  brain  biomarkers  between  patients  with  favorable  and

unfavorable neurologic outcome (patients with favorable [blue circles] and unfavorable [red

squares] outcomes) at 0-, 24-, 48-, and 72-hours after return of spontaneous circulation report

the mean concentration and spread (SD). Each graph notes the number of patients and studies

included in determining the mean and standard deviation for each point
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Biomarkers  at  different  time  points  after  ROSC  (return  of  spontaneous  circulation).  A)

Neuron-specific  enolase  (NSE):  Y-axis:  NSE  [conc]  (µg/L),  X-axis:  Hours  from  ROSC,

Trend: Increase in NSE levels over time, especially in the red dashed-line group;  B) S100

Calcium binding protein B (S100B): Y-axis: S100B [conc] (µg/L), X-axis: Hours from ROSC,

Trend: Initial increase followed by a decrease;  C) Neurofilament light chain (NFL): Y-axis:

NFL [conc]  (pg/mL),  X-axis:  Hours  from ROSC,  Trend:  Significant  increase  over  time,

particularly in the red dashed-line group; D) Ubiquitin C-terminal hydrolase L1 (UCH-L1): Y-

axis: UCH-L1 [conc] (pg/mL), X-axis: Hours from ROSC, Trend: Increase up to 24-48 hours,

then stabilization;  E) Tau protein: Y-axis: Tau [conc] (pg/mL), X-axis: Hours from ROSC,

Trend: Significant differences between groups, large variability in values;  F) Glial fibrillary

acidic  protein (GFAP):  Y-axis:  GFAP [conc]  (pg/mL),  X-axis:  Hours  from ROSC, Trend:

Gradual increase in values over time. Red dashed line — possibly indicates a group with poor

prognosis.  Blue dashed line — possibly indicates a group with better prognosis. All graphs

represent mean values with confidence intervals
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Table 2. Pooled analysis of brain biomarkers between survivors and patients who died
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No.  of

studie

s

Mean ± SD Events Heterogeneit

y  between
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P-

value

Survived Died MD 95%CI

Neuron-specific enolase (NSE)
After

ROSC

2 25.94

(17.57)
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(29.42)

–21.26 –27.65

to  –

14.87

0% <

0.001

Day 1 5 20.62

(11.29)
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(30.18)

–28.33 –44.53

to  –

12.12

97% <

0.001

Day 2 3 23.63 88.96 –70.02 –106.83 92% <
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(18.86) (53.09) to  –
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–474.41
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to 9.35

93% 0.07

Day 2 1 382.35 379.71 2.64 –257.68 NA 0.98
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(318.48) (164.96) to

262.96
Day 3 1 480.15

(365.75)

692.22

(328.28)

–

212.07

–525.43

to

101.29

NA 0.18

Glial fibrillary acidic protein (GFAP)
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2
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3468.3

0
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4798.37

to  –

175.62

NA <
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CI — confidence interval; MD — mean difference; NA — not applicable; ROSC — return of

spontaneous circulation; SD — standard deviation

Table 3. Pooled analysis of brain biomarkers between patients with favorable and unfavorable

neurologic outcome 

Biomarke

r 

No.  of

studie

s

Mean ± SD Events
Heterogeneit

y  between

Trials

P-

valu

e
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e

outcome

Unfavorabl

e outcome

MD 95%C

I

Neuron-specific enolase (NSE)
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ROSC

2 33.97

(19.97)

47.84

(32.62)

–17.94 –23.32

to  –

12.55

0% <

0.00

1
Day 1 2 34.15

(16.18)

71.94

(39.01)

–37.23 –66.69

to  –

7.77

92% 0.01

Day 2 3 27.06

(17.21)

73.38

(42.61)

–45.66 –59.35

to  –

31.98

75% <

0.00

1
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Day 3 3 26.15

(26.61)

67.13

(43.31)

–40.23 –54.88

to  –

25.58

65% <

0.00

1
S100 Calcium binding protein B (S100B)
After

ROSC

2 0.462

(0.402)

1.343

(1.381)

–0.94 –2.45

to 0.58

98% 0.22
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93% 0.02

Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1)
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-

340.65

to
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(6.85) (239.92) 279.72 355.04

to  –

204.40

0.00

1

Neurofilament light chain (NFL)
Day 1 2 21.89

(11.79)

119.75

(118.97)

–

104.37

–

215.74

to 6.99

92% 0.07

Day 2 1 41.04

(18.88)

387.81

(205.06)

–

346.77

–

408.24

to  –

285.30

NA <

0.00

1

Day 3 1 90.71

(48.6)

657.82

(344.12)

–

567.11 

–

675.87

to  –

458.35

NA <

0.00

1

Glial fibrillary acidic protein (GFAP)
Day 1 2 183.99

(119.99)

890.09

(668.34)

–

717.02

–

887.34

to  –

546.69

0% <

0.00

1

Day 2 1 197.78

(64.36)

4981.68

(4020.96)

–

4773.9

0

–

5975.8

4  to  –

3571.9

6

NA <

0.00

1

Day 3 2 196.76

(117.21)

4299.95

(2943.56)

–

3639.3

4

–

5255.9

3  to  –

2022.7

5

80% <

0.00

1

CI — confidence interval; MD — mean difference; NA — not applicable; ROSC — return of

spontaneous circulation; SD — standard deviation
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