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Abstract
Background: To investigate whether the antiPCSK9 vaccine can affect the CRP and oxidative stress 
(OS) during acute systemic inflammation. 
Methods: Male albino mice were randomly divided into three groups: non-treated mice (the sham group), 
treated with a nonspecific stimulator of the immune response — Freund’s complete adjuvant (CFA; the CFA 
group), and vaccinated mice treated with CFA (the vaccine group). The vaccine group was subcutaneously 
immunized with the antiPCSK9 formulation, 4 × in bi-weekly intervals. To induce inflammation, all 
mice were subjected to the CFA challenge after the vaccination plan. The hsCRP level and OS status were 
evaluated by a mouse CRP assay kit and the pro-oxidant antioxidant balance (PAB) assay, respectively.
Results: The vaccine induced a high-titter IgG antiPCSK9 antibody, which was accompanied with  
a significant PCSK9 reduction (–24.7% and –28.5% compared with the sham and CFA group, respec-
tively), and the inhibition of PCSK9/LDLR interaction (–27.8% and –29.4%, respectively). hsCRP was 
significantly increased in the vaccine and CFA groups by 225% and 274%, respectively, when compared 
with the sham group; however, it was non-significantly decreased (–18%; p = 0.520) in the vaccine 
group in comparison with the CFA group. The PAB values indicated that OS was significantly increased 
in the CFA group (by 72.7%) and the vaccine group (by 76%) when compared to the sham group; how-
ever, there was no significant difference in the PAB values between the vaccine and CFA groups. 
Conclusions: The antiPCSK9 vaccine failed to significantly reduce the serum hs-CRP and OS in-
duced in the CFA-challenged albino mice. (Cardiol J 2025; 32, 1: 73–82)
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Introduction 

Proprotein convertase subtilisin/kexin type 9 
(PCSK9) is a well-known regulator of cholesterol 
homeostasis, which acts via the binding to the 
hepatocyte low-density lipoprotein (LDL) receptor 
(LDLR) that will be consequently targeted to the 
lysosomal degradation [1–4]. Immediately after 
the discovery of PCSK9 protein and its function, 
growing evidence from genetic association studies 
showed PCSK9 inhibition as a potential lipid-lower-
ing target [1–5]. Currently there are several types 
of PCSK9 inhibitors such as the FDA-approved 
PCSK9 monoclonal antibodies (mAbs) alirocumab 
and evolocumab [6–9] and small interference RNA 
against mRNA PCSK9 [10]. Additionally, there are 
under-investigation oral PCSK9 inhibitors (e.g., 
macrocyclic peptide MK-0616) [11–14]. Finally, 
there are antiPCSK9 vaccines [15–21], which have 
emerged as effective therapeutics for ameliorat-
ing hypercholesterolemia and atherosclerosis in 
preclinical studies.

Besides the role in cholesterol metabolism, 
there is also experimental and clinical evidence 
showing that PCSK9 can act as a pro-inflammatory 
mediator, however, there are contradictory reports 
regarding the effect of PCSK9 inhibitors on in-
flammation [22]. Inflammation contributes to the 
initiation and progression of atherosclerosis up to 
plaque rupture and erosion, causing atherosclerotic 
cardiovascular disease (ASCVD) [23].

High-sensitivity C-reactive protein (hs-CRP) 
is an acute-phase mediator mainly produced by the 
hepatocytes, which is considered as a sensitive but 
non-specific biomarker of systemic inflammation [24].  
Hs-CRP has been known as a risk marker/risk en-
hancer and potential risk factor for atherosclerosis 
[25] as well as a strong cardiovascular risk predic-
tor [26], however the casual association between 
hs-CRP and CVD events has not been confirmed 
[27]. Mechanistically, hs-CRP can elevate the LDL 
uptake by macrophages and consequently acceler-
ate foam cell formation, which has a direct role in 
the initiation of atherosclerotic plaque formation 
[28]. Several epidemiological studies have indi-
cated a positive and strong association between 
plasma levels of PCSK9, hs-CRP, and acute-phase 
inflammation in patients with coronary artery 
disease (CAD) [29–31]. Nevertheless, despite the 
aforementioned association between PCSK9 and 
hs-CRP, there is evidence indicating no association 
between the treatment with mAbs-based PCSK9 
inhibitors and changes in hs-CRP levels in CVD 
patients [32–36].  

Other important inflammation modulators 
are reactive oxygen species (ROS) and related 
enzymes responded to oxidative stress, such as 
myeloperoxidase (MPO), superoxide dismutase 
(SOD), glutathione peroxidase (GSH-Px), and 
catalase. Oxidative stress is observed when there 
is an imbalance between the ROS generation and 
elimination, due to the impaired antioxidant de-
fence system and/or the exacerbated activity of 
pro-oxidant enzymes [37]. It has been found that 
there is a link between PCSK9 production and oxi-
dative stress [38–41], mediated predominantly by 
the nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase‐dependent ROS generation [42, 
43]. There are reports that demonstrated the up-
regulatory effect of ROS on the PCSK9 expression 
and vice versa in vascular cells, leading to destruc-
tive inflammatory responses within atherosclerotic 
plaques [42–44]. Notably, the PCSK9 inhibition, by 
either the gene manipulation or anti-PCSK9 mono-
clonal antibodies, has been found to significantly 
attenuate ROS-mediated oxidative damage in the 
in vitro cellular model [45, 46] and various animal 
models [47, 48]. 

To the best of our knowledge, the antiPCSK9 
vaccines on the hs-CRP level and the oxidative 
stress in an experimental inflammation model is 
understudied. During the recent few years, we 
have developed an antiPCSK9 vaccine [21] that 
could effectively induce the safe and long-lasting 
generation of the functional antiPCSK9 anti-
bodies, which was accompanied with significant 
therapeutic [49, 50] and preventive [51, 52] effects 
against hypercholesterolemia and atherosclerosis 
in mouse and primate models. In the present study, 
we aimed to find whether the PCSK9 inhibition us-
ing the antiPCSK9 vaccine can affect the hs-CRP 
level and the oxidative stress during systemic 
inflammation. 

Methods 

The vaccine preparation
An immunogenic peptide construct containing 

PCSK9 and tetanus epitopes was designed using 
AFFITOME® technology [21, 53]. The peptide se-
quence (Table 1) with a purity grade of > 95% was 
synthesized and high-performance liquid chroma-
tography (HPLC)-purified by ChinaPeptides Co., 
Ltd. (Shanghai, China). The peptide was adsorbed 
to 0.4% Alum adjuvant (Sigma-Aldrich) at the 1:1 
(v:v) ratio and used for in vivo studies on mice.
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Animals 
8–10 weeks old albino mice (28 ± 3 g) were 

purchased from the laboratory animal research 
centre of Razi Vaccine and Serum Research In-
stitute, Mashhad, Iran. All animal handling pro-
cedures were carried out in strict accordance 
with the Animal Welfare guidelines approved by 
the Institutional Ethics Committee and Research 
Advisory Committee of the Mashhad Univer-
sity of Medical Sciences, Iran (code: IR.MUMS.
PHARMACY.REC.1400.010). The animals were 
housed in an air-conditioned room at a constant 
temperature of 22 ± 2°C with 12:12 h light/dark 
cycle and fed a standard rodent diet and water ad 
libitum. At the end of the study, all animals were 
euthanized by intravenous injection (30 mg/kg) of 
thiopental sodium.

Vaccination plan 
Thirty male albino mice were randomly di-

vided into three groups, including non-treated 
mice (the sham group), the mice treated with 
the Freund’s complete adjuvant (CFA; the CFA 
group), and the vaccinated mice treated with 
CFA (the vaccine group). The vaccine group was 
subcutaneously immunized with the antiPCSK9 
formulation (15 µg/mouse), four times in bi-
weekly intervals, while the sham and CFA groups 
received the phosphate buffer by a similar route. 
After the vaccination plan, all mice were subjected 
to the CFA challenge to evaluate the effect of the 
antiPCSK9 vaccine on inflammation and oxidative 
stress status.

Developing CFA-challenged mice
To develop an animal model with acute in-

flammation and oxidative stress, the method of 
Fehrenbacher et al. [54] with some changes was 
used. In brief, CFA emulsion (0.5 mg/ mL) was 
prepared via mixing 0.5 mL of CFA (1 mg/mL of 
Mycobacterium tuberculosis, heat-killed and dried; 
Sigma-Aldrich, St. Louis, MO, USA) in 0.5 mL of 
sterile 0.9% saline buffer. The CFA group and the 
vaccine group were treated with 50 µL of freshly  

prepared homogeneous CFA emulsion (0.5 mg/mL) 
by subcutaneous injection into the left hind paw, 
while the sham group received 50 µL of the 
saline buffer by a similar route. According to 
our previous evaluation of CRP’s kinetic [55], 
the serum hs-CRP reaches the highest level in 
CFA-challenged albino mice after 16-24 h; thus,  
a point in time was selected to evaluate the effect 
of the antiPCSK9 vaccine on inflammation and 
oxidative stress status. Mice were anesthetized 
and blood was withdrawn by cardiac drainage into 
a dry tube. Serum was separated by centrifugation 
at 1800 g  for 10 min and kept at −20°C prior to 
analysis. 

Evaluating the serum hs-CRP level  
and oxidative stress 

To find the effect of the antiPCSK9 vaccine 
on acute inflammation, serum concentrations 
of hs-CRP were measured using a mouse CRP 
ELISA kit (Abcam; ab157712). To determine 
oxidative stress status, the pro-oxidant anti-
oxidant balance (PAB) in the serum samples was 
assayed according to the previously described 
method [56]. In brief, a mix of 10 µL of each 
serum sample or standard solution and 200 µL 
of fresh working solution [containing TMB/ 
/DMSO solution, 0.05 M acetate buffer (pH 4.5), 
100 mM chloramine T fresh solution, and 25 U 
of peroxidase enzyme solution] was loaded into a 
96-well plate and incubated in a dark place for 12 
minutes at 37°C. Then, 100 µL of 2 N HCL was 
added to each well and the OD was measured at 
450 nm, with a reference wavelength of 620 nm  
or 570 nm. A standard curve was prepared us-
ing standard solutions with different propor-
tions (0–100%) of hydrogen peroxide (250 µM) 
and uric acid (3 mM in 10 mM NaOH). Finally, 
the samples’ PAB values were measured ac-
cording to the prepared standard curve. The 
values of the PAB assay were expressed in an 
arbitrary HK (Hamidi-Koliakos) unit based on  
the percentage of hydrogen peroxide detected in the  
standard solution.  

Table 1. Sequences of the immunogenic peptides used in the current study

Peptide name Sequence Immunogenicity

PCSK9 S-I-P-W-N-L-E-R-I-T-P-V-R B cell epitope

Tetanus A-Q-Y-I-K-A-N-S-K-F-I-G-I-T-E-L T cell epitope

PCSK9 peptide vaccine SIPWNLERITPVRkkAQYIKANSKFIGITEL
*A 2 lysine-spacer sequence (kk) as the target sequence of cathepsin protease involved antigen processing
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Evaluating the vaccine efficacy  
To determine the efficacy of the antiPCSK9 

vaccine in mice, plasma antiPCSK9 antibody titer, 
plasma PCSK9 concentration, and antibody inhib-
ited PCSK9/LDLR interaction were measured as 
described in the following subsections.  

Measuring plasma antiPCSK9 antibodies
The ELISA method was employed to evaluate 

the titer of plasma antiPCSK9 antibodies in vac-
cinated mice. In brief, 100 µL of serially diluted 
plasma samples (1:400 × 1:4) were loaded and 
incubated for 1h at 37°C in a 96-well Nunc-Maxi-
Sorp plate coated with PCSK9 peptide. To detect 
attached antiPCSK9 antibodies, HRP-conjugated 
anti-mouse IgG (H + L) (Sigma Aldrich; dilution 
1:1000) was added and incubated for 1 h at 37°C 
followed by the addition of the substrate TMB 
(3,3',5,5'-tetramethylbenzidine, Sigma-Aldrich) for 
10 min at room temperature (RT). The optical den-
sity (OD) at 450 nm was measured with a microwell 
plate reader (Sunrise, Tecan, Switzerland) and the 
titers were defined as the dilution factor referring 
to 50% of the maximal optical density (ODmax/2). 
The results were presented as the mean titers  
± SD of all animals per group. 

Measuring plasma PCSK9 concentration
The concentration of plasma PCSK9 protein in 

vaccinated mice was measured by a PCSK9 ELISA 
kit (CircuLexTM, Cy-8078, MBL, Woburn, MA) 
in accordance with the manufacturer’s manual. In 
brief, 100 µL of the diluted plasma samples (1:100) 
was incubated on a 96-well microplate for 1 h  at 
RT. An HRP-conjugated anti-PCSK9 antibody was 
incubated for 1 h  followed by adding the substrate 
reagent and stop solution, all at RT. The microw-
ell plate reader was used to detect the OD at  
450 nm. Eventually, a standard curve provided by 
the supplier was defined to measure the plasma 
concentration of PCSK9.

Evaluating the effect of plasma antiPCSK9  
antibodies on the PCSK9-LDLR interaction 

The potential of vaccine-induced antibodies 
to inhibit the interaction of PCSK9/LDLR was 
assayed by using a PCSK9-LDLR in vitro binding 
assay kit (CircuLexTM, Cy-8150, MBL, Woburn, 
MA) in accordance with the manufacturer’s manual. 
In brief, 100 µL of vehicle control or the plasma 
samples of vaccinated mice were loaded in a 96-well 
microplate pre-coated with the recombinant EGF- 
-A domain of LDLR containing the binding site for 
PCSK9. Thereafter, the reaction was immediately 

initiated by adding a “His-tagged PCSK9 wiled 
type” solution incubated for 2 h followed by adding 
a biotinylated anti-His-tag monoclonal antibody for 
1 h at RT. Subsequently, HRP-conjugated streptavi-
din was incubated for 1 h at RT followed by adding 
the substrate reagent and stop solution. The OD 
at 450 nm was measured with the microwell plate 
reader. Notably, the higher ELISA OD indicates  
a higher amount of PCSK9-LDLR interaction, while 
in the presence of plasma containing antiPCSK9 
antibodies the interaction is inhibited and conse-
quently a reduced ELISA OD will be detected. 

Statistical analysis 
One-way ANOVA and Tukey-Kramer post- 

-hoc multiple comparison tests were carried out to 
measure the significance of the difference among 
groups, (Graph Pad Prism Software, version 9.0, 
San Diego, CA). Data were reported as mean ± SD. 
Data with p < 0.05 were regarded to be statisti-
cally significant. 

Results

The antiPCSK9 vaccine induced  
the functional antibodies in albino mice

Upon three boosters, the antiPCSK9 vac-
cine was found to significantly promote a high-
titer IgG antibody against the PCSK9 peptide 
in albino mice — the antiPCSK9 antibody titer 
(ODmax/2) was 12,925 ± 929 in the vacci nat-
ed mice, two weeks after the last immunization  
(Fig. 1A). The plasma concentration of free PCSK9 
was found to be significantly (p ≤ 0.001) reduced 
by –24.7% and –28.5% in the vaccine group when 
compared to the sham and CFA group, respectively  
(Fig. 1B). Moreover, to determine whether the 
vaccine-induced antiPCSK9 antibodies can inhibit 
PCSK9 function, CircuLex PCSK9-LDLR in vitro 
binding assay kit was employed. In the presence 
of the vaccinated mice’s plasma samples, in vitro 
binding of murine PCSK9 and LDLR in the vacci-
nated group was significantly (p < 0.05) reduced by 
–27.8% and –29.4% when compared to the plasma 
samples of the sham group and the CFA group, 
respectively (Fig. 1C). 

The antiPCSK9 vaccine and acute  
inflammation in CFA-challenged mice 

It was shown that the antiPCSK9 vaccine 
could not significantly affect the increased level 
of serum hs-CRP in the CFA-challenged albino 
mice — the serum levels of hs-CRP in the vaccine, 
CFA, and sham groups were 14.65 ± 4.66 mg/L,  
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17.84 ± 5.37 mg/L, 6.5 ± 2.02 mg/L, respectively 
(Fig. 2). The statistical analysis indicated that the lev-
el of hs-CRP was significantly increased in the vac-
cine and CFA groups by 225% (p = 0.037) and 274%  
(p = 0.004), respectively when compared with the 
sham group. It was non-significantly decreased 
in the vaccine group in comparison with the CFA 
group (by 18%, p = 0.520).

The antiPCSK9 vaccine and the oxidative 
stress in CFA-challenged mice

To determine the effect of the antiPCSK9 vac-
cine on oxidative stress, the balance between the 
plasma pro-oxidant load and antioxidant capacity 
was evaluated using the PAB assay. It was shown 
that the antiPCSK9 vaccine could not significantly 
affect the serum pro-oxidant/antioxidant status in 
CFA-challenged albino mice. The PAB values in the 
vaccine, CFA, and sham groups were 54.22 ± 10.93 
HK, 53.19 ± 9.8 HK, and 30.8 ± 6.7 HK, respec-
tively (Fig. 3). The PAB value (oxidative stress) 
was significantly increased in the CFA group (by 
72.7%, p < 0.001) and the vaccine group (by 76%, 
p < 0.001) when compared with the sham group 
with no significant difference between the vaccine 
and CFA groups. 

Figure 1. The efficacy of the antiPCSK9 vaccine in albino mice, two weeks after the last immunization. The sham group 
involved non-treated mice, the CFA group involved the CFA-treated mice, and the vaccine group involved mice who 
after vaccination were treated with the CFA. A — The antiPCSK9 antibody titer (ODmax/2) in the vaccinated and non-
vaccinated albino mice. B — The plasma concentrations of the free PCSK9 in the vaccine, CFA, and sham groups were 
97.4 ± 13.8 ng/mL, 136.2 ± 9.8 ng/mL, and 129.4 ± 7.8 ng/mL, respectively. C — In vitro PCSK9/LDLR binding assay. 
The levels of bound PCSK9 to LDLR in assays using the plasma samples of the vaccine, CFA, and sham groups, were 
26.4 ± 5.4 ng/mL, 37.4 ± 5.6 ng/mL, and 36.6 ± 6.4 ng/mL, respectively. Data are expressed as mean ± SD (10 mice 
per group). Pooling of samples was performed to obtain sufficient sample volume for assay, when needed. Statistical 
differences at a p-value less than 0.05 were considered to be significant
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Figure 2. The effect of the antiPCSK9 vaccine on the 
serum level of hs-CRP in albino mice. The sham group 
involved non-treated mice, the CFA group involved the 
CFA-treated mice, and the vaccine group involved mice  
who after vaccination were treated with the CFA. Pool-
ing of samples was performed to obtain sufficient sam-
ple volume for assay, when needed. Data are expressed 
as mean ± SD (10 mice per group). Statistical differ-
ences at a p-value less than 0.05 were considered to be 
significant
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Discussion 

The present study indicated that, despite in-
ducing the production of the functional antiPCSK9 
antibodies, the antiPCSK9 vaccine failed, despite 
numerical reduction, to significantly reduce the 
serum hs-CRP in the CFA-challenged albino mice. 
It was also observed that there was a lack of any 
reducing effect on the oxidative stress in this 
model. The production of the functional antiPCSK9 
antibodies bounding blood circulating PCSK9 pro-
tein and consequently reducing the plasma level of 
PCSK9 and its interaction with the live LDLR has 
also been detected in previous studies, supporting 
the efficacy of this antiPCSK9 vaccine [21, 49–52]. 

Of note, there has been a paucity of studies 
evaluating the association of an antiPCSK9 vaccine 
and the serum hs-CRP levels in the inflamma-
tory condition. A recent study [57] indicated that  
the present antiPCSK9 vaccine did not change the 
 serum level of hs-CRP in healthy rhesus macaque 
monkeys. There have also been several clinical 
trials that investigated the effect of mAb-based 
PCSK9 inhibitors on inflammatory markers, espe-
cially on the hs-CRP levels, in patients with CVD, 

supporting the present results [31–36]. Data of 
the EQUATOR study, a randomized, multicenter, 
double-blind, and placebo-controlled phase II trial, 
demonstrated that 6 months of treatment with the 
antiPCSK9 mAb RG7652 did not change levels of 
the serum hs-CRP and pro-inflammatory cytokines 
IL-6 and TNF-α in patients at high risk for or with 
established CAD [31]. Similarly, a study in patients 
with stable CAD after premature myocardial infarc-
tion and very high lipoprotein(a) levels showed that 
plasma levels of hs-CRP were not altered after  
6 months of treatment with the PCSK9 inhibitors 
alirocumab or evolocumab [32]. Consistently, no 
association between baseline levels of hs-CRP and 
efficacy of evolocumab in reducing adverse cardio-
vascular outcomes was also found in the FOURIER 
trial [33]. On the other hand, the larger efficacy of 
PCSK9 inhibitors in the reduction of CVD events 
was observed in the very high-risk patients with 
high baseline levels of hs-CRP [34, 58, 59]. These 
findings can be further supported by two independ-
ent meta-analyses of randomized controlled trials 
that failed to find a significant effect of antiPCSK9 
mAbs on serum/plasma levels of hs-CRP [34, 35]. 
Therefore, the aforementioned findings imply that 
hs-CRP is not a response mediator to PCSK9 inhibi-
tors, contrary to other lipid lowering drugs, espe-
cially statins, and more recently bempedoic acid (via 
AMP-activated kinase pathway activation) [60, 61].  

Moreover, oxidative stress is an important 
inflammation modulator, and the current results 
indicated that the antiPCSK9 vaccine does not 
change the CFA-induced oxidative stress in albino 
mice. Similarly, a clinical trial showed that the 
administration of evolocumab had no impact on 
the activity of key antioxidant enzymes includ-
ing catalase, SOD, and GSH-Px in erythrocytes 
of patients with CAD [62]. However, there are 
several reports showing the protective effect 
of PCSK9 inhibition against oxidative stress, 
by reducing the pro-oxidant load. An in vitro 
study showed that evolocumab could significantly 
reduce the concentration of malondialdehyde 
(MDA) and the ROS-mediated oxidative damage 
in human umbilical vein endothelial cells [45].  
Another PCSK9 inhibitor, alirocumab, was found  
to decrease oxidative stress reactions in a rat model 
of alcoholic liver disease by reducing lipid per-
oxidation, the MPO activity, and frequency of 
infiltrating MPO-generating cells in the liver [48]. 
These findings suggest that although inhibition of 
the circulating PCSK9 does not affect the blood 
antioxidant capacity, it can reduce the pro-oxidant 
load through oxidative stress conditions. Of note, 
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Figure 3. The effect of the antiPCSK9 vaccine on the 
serum PAB (pro-oxidant antioxidant balance) in albino 
mice. The PAB values were expressed in an arbitrary 
HK (Hamidi-Koliakos) unit. The sham group involved 
non-treated mice, the CFA group involved the CFA-
treated mice, and the vaccine group involved mice who 
after vaccination were treated with the CFA. Pooling 
of samples was performed to obtain sufficient sample 
volume for assay, when needed. Data are presented as 
mean ± SD (10 mice per group). Statistical differences at  
a p-value less than 0.05 were considered to be significant
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since the present result was based on the PAB 
assay that shows the general changes of both pro-
oxidants and antioxidants simultaneously in the 
serum/plasma samples, the lack of the effect of 
the antiPCSK9 vaccine on the PAB values may be 
due to a high load of the blood pro-oxidants in the 
CFA-challenged albino mice [63–71]. 

There are some limitations deserving ac-
knowledgment. Firstly, despite the fact that  
a widely used inflammation model was used in this 
study, every experimental model of inflammation 
has limitations, and the results of this study may 
not be applicable to other types of inflammation, 
especially chronic inflammation such as that found 
in atherosclerosis. Secondly, there are many dif-
ferences in the inflammation process between 
humans and rodents that should be considered 
when interpreting the results. Another noteworthy 
point is that in this study, the PCSK9 peptide vac-
cine was used in pure form without any delivery 
system, while the previous reports of the current 
group have mainly focused on the nanoliposomal 
form of the vaccine. Therefore, the comparison 
of liposomal and non-liposomal forms of peptide 
vaccine in terms of the effect on inflammatory and 
oxidative indicators can be investigated in future 
studies. Finally, according to the observed decrease 
in serum CRP levels in the vaccine group, conduct-
ing additional studies in this regard is suggested.

Conclusions

The results of the present study indicate that 
the antiPCSK9 vaccine, despite its significant 
efficacy in inhibiting PCSK9 function, could not 
protect against the CFA-induced acute systemic 
inflammation and oxidative stress in mice.
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