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Coronary artery disease (CAD) is one of the 
leading causes of mortality worldwide, accounting 
for about 30% of all deaths [1]. Early diagnosis and 
correct estimation of the hemodynamic significance 
of coronary stenoses are crucial to initiate phar-
macotherapy and to qualify the patient for possible 
percutaneous or surgical revascularization.

Currently, invasive pressure-wire-based meth-
ods such as fractional flow reserve (FFR) and 
resting indices, e.g., instantaneous wave-free ratio 
(iFR), are the standard to assess the significance 
of coronary stenoses. However, invasive determi-
nation of iFR/FFR has disadvantages, including 
(i) the use of a potentially nephrotoxic contrast 
agent and ionizing radiation, (ii) vascular access 
complications in 1.5% of patients, (iii) damage of 
the atherosclerotic plaque or healthy arterial seg-
ment during guidewire passage in 0.5% of patients 
[2], and (iv) side effects of adenosine administra-
tion, required during FFR measurements, in 35% 
of patients (chest pain, dyspnea, and transient 
arrhythmias) [2].

The increasing use of computed tomography 
angiography (angio-CT) to diagnose CAD and plan 
PCI procedures has triggered the development 
of novel non-invasive methods for iFRCT/FFRCT 

evaluation [3–6]. The values of iFRCT/FFRCT can 
be numerically determined based on the flow 
simulation and pressure measurements. In the last 

decade, 4 solutions for non-invasive estimation of 
the hemodynamic significance of coronary stenoses 
using FFRCT have become commercially avail-
able [7]. However, due to their feasibility only in  
a central core laboratory necessitating telemedi-
cine and/or high costs, they are not commonly used 
in clinical practice. To circumvent the disadvan-
tages of FFR, methods to determine iFRCT have also 
been developed but not yet commercialized [3-6].  
Those methods have limitations (Table 1). There-
fore, we aimed to assess the effect of simplifications 
implemented in previous iFRCT software on the 
estimation of coronary artery stenosis and propose 
a new method for coronary artery stenosis assess-
ment using iFRCT.

The simplifications in Table 1 yield the follow-
ing shortages in the methods: lack of information 
on the vessel complex geometry, lack of blood-
wall interaction, non-realistic flow model, and no 
possible patient comorbidities considered. Those 
shortages affect reliable estimation of iFRCT.

In contrast to previous solutions (Table 1), our 
simulations include patient-specific conditions by 
considering blood pressure, stroke volumes, blood 
velocities, and heart rate (Fig. 1). This approach 
makes it possible to incorporate the impact of the 
patient’s comorbidities on the hemodynamic pa-
rameters of the flow, enabling the most accurate 
representation of the physiological coronary blood 
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flow. Based on CT, 3D models were created, taking 
into account the branches of the coronary arter-
ies. This issue is important because the number, 
length, and irregularity of the branches affect the 
value of the pressure behind the stenosis. Despite 
the promising results obtained with previous nu-
merical methods for determining coronary artery 
stenosis, it is necessary to be cautious about the 
potential underestimation of the calculated values 
[3–6]. We analyzed the effect of different variants of 
assumptions on the estimation of the iFRCT index, 
including (i) rigid wall, Newtonian blood flow, (ii) 
rigid wall, non-Newtonian blood flow, (iii) elastic 
wall, Newtonian blood flow, and (iv) elastic wall, 
non-Newtonian blood flow. The estimated iFRCT 

indices for the considered cases are: (i) 0.97, (ii) 

0.99, (iii) 0.89, and (iv) 0.93, respectively (Fig. 2).  
Clearly, the differences between the index values 
are considerable, ranging up to 0.10 units, and po-
tentially changing the decision regarding the need 
for revascularization. Subsequently, our results 
show that the assumptions related to coronary ar-
tery wall, boundary conditions, and blood flow are 
fundamental because they can lead to inaccurate 
clinical decisions. 

Our new methodology of non-invasive esti-
mation of the iFRCT index is based on numerical 
simulations of blood flow in the coronary arteries, 
whose geometry was generated from CT images. 
Our simulations showed that the above-listed condi-
tions (iv) yielded the best match of the iFRCT index 
(0.93) to the invasive examination value of iFR 0.92.

Table 1. Comparison of methods for determining iFRCT

Reference [3] [4] [5] [6] Present study

Pearson correla-
tion coefficient

0.65

(iFRCT vs. FFR)

– 0.85

(iFRCT vs. iFR)

0.68

(iFRCT vs. iFR)

–

Geometrical 
model

3D model 1D model 3D model 3D model 3D model

Flow assumption Newtonian fluid Newtonian fluid Newtonian fluid, 
laminar

Newtonian fluid Non-Newtonian 
fluid, turbulent

Coronary artery 
wall assumption

Rigid wall Wall viscosity 
coefficient

Rigid wall Rigid wall Elastic wall

Simulation 
boundary condi-
tions

Resting correla-
tion 

Average data 
from literature 

Correlation 
of flow and 
coronary vessel 
length

Resting correla-
tion 

Velocity, Wind-
kessel model

Figure 1. A. Assessment of coronary artery stenosis with patient-specific blood flow parameters; B. Effect of different 
variants of assumptions on the estimation of the iFRCT index, leading to differences in iFRCT value of up to 0.10
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We conclude that the assumptions made in 
the flow numerical modelling significantly affect 
the results. To reliably estimate the iFRCT index, 
numerous factors must be taken into account, i.e., 
a change in velocity over time as the boundary 
condition at the aortic inlet, boundary conditions at 
the truncated ends of the coronary arteries and the 
aortic outlet determined based on the Windkessel 
model, and fluid-structure interaction between the 
blood and the artery walls. The Windkessel model 
makes it possible to take into consideration very 
important factors determining the boundary condi-
tions, i.e., the elasticity of blood vessels outside the 
considered artery system geometry, their possible 
pathology and complex reactions, and the effect of 
coronary artery wall material on blood flow. The 
results and the definition of an appropriate meth-
odology can be the basis for the execution of an 
algorithm, allowing the determination of the iFRCT 
index or preoperative planning based on CT images 
[7–10]. Further studies will include a larger number 
of patients to further develop a new method to 
accurately identify the hemodynamic significance 
of coronary artery stenosis and facilitate revascu-
larization decisions.
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