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 Notch has its importance in the development and maintenance of cells and tissues. Either gain or loss of Notch si-
gnalling causes a wide range of abnormalities including cancer. To activate Notch signalling, the notch ligand must be 
processed by the family of proteases, ADAMs. Until recently, exclusively in a cancer context, a class of proteases, matrix 
metalloproteinases (MMPs) were known to cleave notch and trigger downstream signalling. Notch was found to regu-
late the expression of matrix metalloproteinases (through crosstalk. Studies have revealed that interactions between 
Notch and MMPs are associated with aggressive cancer traits such as invasion, metastasis, angiogenesis, and endothelial 
mesenchymal transition. In this review, we resummarise the studies which reveal the Notch-MMP interactions that have 
provided new perceptions into the mechanisms behind Notch-mediated aggressiveness in cancers.
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Introduction
The notch signalling pathway is a conserved signalling pa-
thway that regulates normal development and maintains 
homeostasis by regulating cell fate decisions and cellular 
processes. It has an oncogenic role and tumour suppressor 
role depending in a cellular context [1]. Notch is activated via 
canonical and noncanonical ways that lead to the expression 
of the Notch target genes [2]. Inappropriate activation of Notch 
causes over-accumulation of the Notch intracellular domain 
(NICD) thereby activating abnormal cellular transformation 
and resultant morbid cellular traits. Knockdown of Notch or 
use of 𝛾-secretase inhibitors reverses such caused morbid traits 
in vitro [3–5]. Matrix metalloproteinases (MMPs) can cleave 
the notch receptor and activate signalling leading to patho-
logic outcomes [6]. 

Matrix metalloproteinases (MMPs) are zinc-dependent 
proteases which have a role in normal tissue development 

and maintenance through remodelling an extracellular matrix 
(ECM) [7]. There are about 23 MMPs known in humans and their 
expression is stimulated via PI3/AKT, MAPK, and ERK signal-
ling pathways, with turnover being regulated by endogenous 
MMP inhibitors, TIMPs [8]. Dysregulation in MMP turnover has 
a potential effect on tissue homeostasis and cell signalling dy-
namics [9–12]. Immunohistochemical (IHC) studies on tumour 
biopsies show that MMPs are critical role players in the breaka-
ge of tumour boundaries leading to tumour cell migration [13]. 

Role of matrix metalloproteinases in cancer 
In general, matrix metalloproteinases contribute to cancer 
processes via migration, EMT, metastasis and angiogenesis. 
During the migration process, the cell-to-cell and cell-to-
-matrix adhesion has to be disrupted. MMPs can degrade 
ECM, and shed the adhesion molecules (cadherins and inte-
grins), making them well-suited for the role during invasion 
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and metastasis [14, 15]. MMP3 directly cleave the E-cadherin, 
an adhesion molecule of the epithelial cell. Loss of E-cadhe-
rin mediates the epithelial cell to acquire the mesenchymal 
phenotype [16]. MMP2, MMP9 and MT1-MMP degrade the ba-
sal membrane and interstitium and promote angiogenesis. 
The MMP knockout mice did not exhibit such a phenotype 
[17]. Clinical trials involving broad-spectrum MMP inhibitors 
have been unsuccessful so far. Not least, the MMP-specifically 
targeted therapeutics have their challenges such as MMP sub-
-type selectivity, metabolic risks and toxicity [18–20]. 

The canonical Notch cascade
Notch signalling occurs between the two juxtaposed cells or 
within the same cell caused by the interaction of the Notch 
receptor to its ligand. There are four Notch receptors Notch1, 
Notch2, Notch3, and Notch4 and five canonical ligands con-
taining DSL-motif – DLL1, DLL3, DLL4, Jagged1, Jagged2, 
and many non-canonical ligands that lack the DSL-motif [21]. 
On the ligand binding to the Notch receptor, the NRR re-
gion of the receptor undergoes a conformational change to 
expose the S2 site for cleavage recognised by ADAM prote-
ases. The NRR region protects the extracellular Notch S2 site 
from proteases until the NRR site is physically destabilised by 
the ligand binding and ligand endocytosis [22, 23]. The S2 
cleavage typically requires ADAM10 and ADAM17, a disintegrin 
and metalloproteinase for Notch signalling, whereas Notch1 
ligand-independent signalling requires ADAM17 [24]. The S2 
cleavage is an important event for the succeeding S3 cleavage 
by 𝛾-secretase [25]. The S3 cleavage liberates the NICD, trans-
locates to the nucleus, interacts with the DNA binding prote-
ins CSL/RBPJ and MAML to form a ternary complex [26, 27]. 
The ternary complex binds to DNA at the super-enhancer 
region and causes the transcription of target genes [28, 29]. 
Common targets of Notch signalling are transcription factors 
of the HES family – Hes1, Hes5, and Hes7 and HEY family – Hey1, 
Hey2, and HeyL that modulate fundamental cellular processes 
such as proliferation, stem cell maintenance, and differentiation 
during embryonic and adult development [2, 30]. 

Non-canonical processing of Notch by specific 
MMPs
Typically, Notch1 requires consecutive two cleavage steps post 
Notch ligand-receptor binding: first at the S2 site by ADAM pro-
tease ADAM10 or 17, and second at S3 by 𝛾-secretase, which re-
sultantly releases the Notch intracellular domain (NICD). ADAM 
10 and ADAM17 have been regarded as canonical S2 proteases 
for cleavage at the S2 site on the Notch receptor which is regu-
larly implied in normal development and tissue homeostasis via 
regulation of cell fate decisions and cellular processes occur-
ring in drosophila, mice, and humans [25–31]. Many canonical 
and non-canonical Notch pathway components have been 
identified; the non-canonical ligands include DLK1, VE-cadherin, 
stanniocalcin-1 and the non-canonical proteases MMP7, MMP9, 

and MT1-MMP are mostly involved in pathogenesis [31–35]. 
Sawey and colleagues in 2008 found that MMP7 (matrilysin, 
an MMP) processes Notch1 independent of ADAMs which 
causes N1-NICD to be released and translocated to the nucleus 
[6]. On topical addition of recombinant MMP7 to COS-7 cells 
that are expressing Notch1 with C-terminal V5 tag underwent 
Notch activation including 𝛾-secretase cleavage, NICD nuclear 
translocation, and resultant expression of Notch target genes. 
Moreover, the immunoblots of the Notch-V5 tag showed that 
cleavage of the Notch extracellular domain particularly oc-
curred at the S2 site [36]. MMP7 is prevalently overexpressed 
in advanced cancers, with poor overall survival of patients, and is 
regarded as a prognostic biomarker in invasive and recurrent 
cancers [37–39]. MMP7 expression is controlled by PI3-K/AKT 
and/or ERK signalling via NF-κB transcription factor, and its 
loss of control is indicated in pathogenicity [40]. Similarly, like 
MMP7, the membrane-bound MT1-MMP (MMP14) can acti-
vate Notch by processing it independently of ADAMs (fig. 1). 
Changes in MT1-MMP expression affect the Notch signalling 
in melanoma cells. In the experiments, MT1-MMP processes 
the Notch1 actively in a Jagged1 ligand-dependent or indepen-
dent manner. Moreover, when the full-length MT1-MMP was 
expressed in WM266-4 melanoma cells, it cleaved the Notch1. 
In the same experiment, the Notch processing intensity corre-
lated to the expression of MT1-MMP. The resultant stimulation 
of the Notch target gene, HES, was confirmed by HES-reporter 
assay and gene expression analysis [41]. Non-canonical Notch 
processing by MT1-MMP not only affects cancer in the indi-
viduals but immunity too. It acts as a switch in normal B cell 
development in the bone marrow. Ectopic MT1-MMP cleaves 
the Notch ligand Delta-like 1 (DLL1) in bone marrow stem cells 
and thereby diminishes the Notch signalling by switching the B 
cell development [42]. 

Notch-MMP interactions: implications 
Generally, MMPs are expressed at low levels in tissues, and their 
expression is induced by stimuli when required for ECM remo-
delling [11]. Matrix metalloproteinase expression demands 
multilevel regulation of various stimulating factors such as 
cell-ECM interactions, cell-cell interactions, ECM stimulation 
and other cellular environmental factors such as pH, ROS, cellu-
lar endopeptidases, lipid peroxidation, hyperglycemic, hypoxia, 
etc. [9]. MMP expression regulation may involve transcriptional 
regulatory elements, epigenetic regulation, post-transcriptio-
nal regulation, or different regulation occurring due to disease 
conditions involving gene mutations and promoter polymor-
phisms in MMP [43]. These external stimuli lead to downstream 
cell signalling; MMP turnovers are majorly regulated by protein 
kinases PKA, PKB/AKT, and PKC/MAPKs (JNKs, ERKs, and P38) 
signalling pathways [44]. Downstream of these signalling 
pathways, there are cell-type specific transcription factors- 
NF-κB, AP-1 subunits C-jun/C-fos, PEA3, ETS, and STAT that have 
binding sites on the promoters of specific MMPs. Moreover, 
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these transcription factors either upregulate or downregulate 
the expression of MMPs. Functional collaboration of more than 
one transcription factor may be required to regulate the gene-
-specific MMP expression. For example, regulatory interactions 
between AP-1 and cis-acting ETS elements on the MMP1 
promoter are required to induce its expression [45].

Notch-NF-κB-MMP axis: invasion and migration
The notch signalling pathway critically participates in cell 
proliferation, apoptosis, cell invasion, and metastasis; studies 
show that notch pathway members are overexpressed [46–48]. 
Notch inhibition by downregulating Notch1 decreased inva-
sion in prostate cancer [49]. The proliferation and invasion 
of cancer cells require remodelling of the extracellular matrix 
surrounding it through the action of MMPs. Studies show 
Notch controls the expression of ECM component-specific 
matrix metalloproteinases to bring about the rearrangements 
in the tumour environment through cross-talks with the NF-κB 
pathway [50–52]. NF-κB expression is driven by Notch. Also, 
the ectopic feeding of NICD, usually the nuclear-translocated 
part of Notch to the breast cancer cells, causes the cells to lose 
cell to cell adhesion and promotes migration and invasion [51, 
53]. Notch1 is an upstream regulator of the NF-κB pathway 
where Notch1 and Notch3 induce transcription of NF-κB and its 

various subunits [54], moreover, NICD1 and NF-κB interac-
tion leads to its NF-κB retention in the nucleus and enhances 
binding to the promoter of its target MMP genes [55, 56] 
(fig. 2). However, it is not clear whether in addition to retention 
of NF-κB, NICD1 and NF-κB complexed together is required for 
its transcriptional activity. That said, Notch1 downregulation 
leads to inhibition of NF-κB binding activity thereby inhibiting 
the expression of MMPs [53, 57]. NF-κB has a binding site on 
promoters of  MMP1, MMP2, MMP7, and MMP9 to drive their 
expression [43, 52, 58]. Apart from MMPs, NF-κB drives the acti-
vity of cell adhesion molecules of ICAM, VCAM-1, and ECAM-1 
which are essential for the cell migration process [59, 60]. 

Notch-VEGF and MMP axis: angiogenesis 
Studies at the molecular level enable us to understand that 
Notch plays a pivotal role in sprouting angiogenesis; it ma-
intains the functional integrity of leading apical endothelial 
cells and growing basal cells. Particularly, the VEGF-Notch 
axis allows the extravasation of MMPs that degrade the basal 
membrane and facilitate angiogenic sprouting.  In the pro-
cess, the apical endothelial cell (EC) maintains low-notch 
signalling and high VEGFR2 expression to preserve the spro-
uting phenotype. VEGFR2 helps the apical cell to migrate 
towards the VEGF-transmitting angiogenic centre. It promotes 

Figure 1. A diagram of the non-canonical Notch signalling pathway. This schematic shows a simplified overview of the main components of MMP-activated 
Notch signalling. Upon Notch ligand binding, a two-step proteolysis cleavage process i.e. S2 (small scissors within the juxtamembrane region, and the 
transmembrane domain of the Notch receptor is catalysed by members of the metalloproteases (MMP) family and the γ-secretase containing complex i.e. 
S3, respectively, then the Notch intracellular domain (NICD) is released from the membrane and translocates to the nucleus, where it forms a transcriptional 
activation complex with CSL and coactivators (CoA), thereby inducing the transcription of target genes causing proliferation, invasion, angiogenesis, and 
EMT in cancer
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the expression of MT1-MMP, MMP2 and MMP9 which are 
prime members that bring about the ECM remodelling for 
apical cell sprouting and migration. On the other hand, the ba-
sal EC maintains high Notch signalling, low VEGFR2, high 
VEGFR1, and low MMP expression to preserve the non-spro-
uting phenotype in the basal EC [61–63]. Thus, the positive 
and negative crosstalks between VEGF-Notch in the apical 
and basal endothelial cells regulate the expression of MMPs 
to preserve their functional integrity and promote sprouting 
angiogenesis (fig. 3). 

Notch-HEY-MMP axis: epithelial to mesenchymal 
transition
Epithelial mesenchymal transition is the most aggressive trait 
in cancers. Epithelial cells acquire mesenchymal phenotype by 
undergoing remarkable changes. In the transition process, it lo-
ses various epithelial markers and gains mesenchymal markers. 
The loss of epithelial markers such as E-cadherin, γ-catenin, 
actin cytoskeleton organisation and the gain of vimentin, fibro-
nectin, fibrillar collagen, N-cadherin, and the increased activity 
of MMPs (MMP2, MMP2, MMP9). The EMT is a complex process 
triggered by signalling molecules, proteases, and growth fac-
tors (fibroblast growth factor [FGF], platelet-derived growth 
factor [PDGF], transforming growth factor-β [TGF-β]) that 
trigger the downstream signalling such as TGF-β, Hedgehog, 
NF-κB and Notch signalling which involves crosstalks that lead 
to dynamic changes in the phenotype of the epithelial cell [64] 

Figure 2. Schematic illustration of Notch signalling pathway to regulate MMP gene expression. This model summarises, through a literature survey, that 
Notch activation promotes malignant features such as proliferation and invasion in cancer via cross-talking the NF-κB signal pathway

Figure 3. Schematic model of VEGF-Notch and MMP axis in vascular 
endothelial cell (EC) differentiation. In endothelial tip cells, Low-notch 
signalling via Notch1-DLL4 induces high levels of VEGFR2 and MMPs 
to promote migration towards the angiogenic centre. In endothelial 
basal cells, high levels of Notch signalling via Notch1-DLL4 suppresses 
differentiation toward an apical cell phenotype by inducing low expression 
of VEGFR2 and MMPs 
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Figure 4. Notch-mediated epithelial-mesenchymal transition (EMT) cross-talk during carcinogenesis: A. The above diagram summarises the probable cross-
talks between three ways that could drive EMT during carcinogenesis; viz., the canonical Notch signalling, the MMP-Notch-HEY/HES axis and the Growth 
Factor stimulation that induces notch signalling and translocation of NICD to the nucleus, where it forms a transcriptional activation complex with CSL and 
coactivators (CoA), thereby inducing the transcription of target genes HES/HEY. HES/HEY expression causes loss of epithelial markers and gain of mesenchymal 
markers in the epithelial cells leading to EMT. B. The EMT process primarily involves progressive loss of epithelial markers and gain of mesenchymal markers. 
Once the cells acquire a mesenchymal phenotype, they first intravasate and later extravasate from the blood vessel to establish a distant metastasis

(fig. 4). Reports verify that down-regulating Notch signalling 
inhibits EMT by downregulating MMPs [65, 66]. The Notch 
target gene, HEY1, controls the expression of MMPs in sa-
livary adenoid cystic carcinoma, on knockdown of HEY1 it 
suppressed the expression of MMP1, MMP2, MMP3, MMP9, 
MMP11, and MMP13 which may be involved in driving EMT 
[30, 67]. Similarly, numerous reports mention MMPs (MMP7, 
MMP9) having a role in triggering Notch signalling that leads 
to the induction of the EMT trait [36, 68] (fig. 4). 

Conclusions and future perspective
MMP-mediated non-canonical Notch signalling and the in-
volvement of Notch in the regulation of MMPs is associated 
with aggressive outcome in cancer (tab. I). Though, the MMP 
expression is majorly driven by NF-κB, MAPK, AKT signalling 
pathways and TIMPs are regulators of MMPs, it cannot be 
disregarded that under high Notch signalling, the NICD plays 
a primary role in retaining NF-κB subunits in the nucleus, 

A
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which leads to uncontrolled expression of target MMPs. Notch 
inhibition alone may not be enough; the negative outcomes 
of Notch inhibition have been reported in clinical studies 
which cannot be disregarded, firstly, Notch is a conserved 
pathway required for normal cell development and home-
ostasis of tissues by maintaining proliferation and apoptosis 
balance; due to, low notch activity under Notch inhibitors, 
the cells may acquire sprouting phenotype leading to an-
giogenesis. Moreover, several Notch inhibitors under clinical 
trials have exhibited adverse effects including gastrointestinal 
issues, infections, skin cancer-related problems, and tumour 
recurrence [69, 70]. 

The Notch-MMP axes play important roles in tumour pro-
cesses like proliferation, migration, EMT, metastasis, and an-
giogenesis. It has come to our notice that these interactions 
are lethal impart aggressiveness and have added poorer pro-
gnoses to various cancers including those of the brain, bre-
ast, and pancreas. Understanding and targeting Notch-MMP 
interactions may be required to tailor target-specific drugs 
and combinational therapeutic approaches.
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Table I. Summary of Notch and matrix metalloproteinase interactions in human and mouse cancer models and associated functional phenotypes of those 
interactions

Matrix 
metalloproteinase

Axis Phenotype Type of cancer Study model Reference

MMP2, MMP9 Notch- PI3K/AKT/mTOR-
MMP

invasion bladder cancer UMUC3 cell line [71]

MMP2, MMP9 Notch-EMMPRIN-NF-κB/
MMP

migration, invasion human breast 
adenocarcinoma

MDA-MB-231 cell line [72]

MMP2, MMP9 Notch-PI3/AKT-NF-κB-MMP invasion, metastasis, 
angiogenesis

human breast 
adenocarcinoma

MDA-MB-231 cell line [51, 53]

MMP9 Notch-NF-κB/uPA-MMP invasion, metastasis non-small-cell 
lung cancer

A549 and H1299 cell lines [52]

MMP9 Notch-NF-κB/MMP invasion pancreatic cancer BxPC-3 cell line [64]

MMP9 Notch-NF-κB/MMP cell growth, 
migration, invasion 

and induction of 
apoptosis

prostate cancer PC-3, DU145, LNCaP, and C4-
2B cell lines

[65]

MT1-MMP (MMP14) MMP-Notch cell growth and 
proliferation

melanoma 
cancer

WM115 and WM266-4 
primary and metastatic cell 

lines

[41]

MT1-MMP Notch-MMP invasion, EMT Kaposi sarcoma lymphatic endothelial cell 
line

[68]

MMP9 Notch-NF-κB/MMP invasion, 
angiogenesis

breast cancer MDA-MB-231, MCF-7, SKBR-3 
and T47D cell lines

[57]

MMP9 Notch-AKT-MMP migration, 
metastasis, EMT

gastric cancer SGC7901 and AGS cell lines; 
BALB/c mice

[66]

MMP7 Hey1-Notch1 self renewal, EMT, 
metastasis

salivary adenoid 
cystic carcinoma

SACC-LM cell line [67]

MMP7 MMP-Notch1 EMT pancreatic ductal 
adenocarcinoma

human primary acinar cell 
line and C57BL/6J mice

[36]

MMP – matrix metalloproteinase; EMT – epithelial-mesenchymal transition
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