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Introduction.  The study was performed to evaluate the repeatability and effectiveness of the static-junctions image 
guided (SJIG) method of craniospinal irradiation.
Material and methods.  An analysis of 40 treatment plans was performed. All treatment plans were reviewed with regard 
to the distances between isocentres between in every single field of each fraction during all treatment days. Based on that 
data, second (actually treated) plans were created. The planned and treated parameters were compared.
Results.  The study group consisted of 40 patients irradiated in the craniospinal region. Data on 902 fractions and 1635 
isocentres positions was collected. 1-, 2- and 5-year overall survival was 95%, 89% and 78%, respectively. Spine metastases 
were observed in regions which were covered with a homogenous dose during treatment.
Conclusions.  SJIG is safe and produces very good long-term outcomes. Treatment planning and delivery is simple with 
good reproduction of the planned dose distribution during the actual treatment.
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Introduction
Craniospinal irradiation (CSI) is commonly used in the treat-
ment of patients with primary central nervous system tumours 
which spread via cerebrospinal fluid [1, 2]. CSI is a very chal-
lenging technique due to the length and the complexity of 
the planning target volume (PTV) and radiosensitivity of the 
surrounding organs. Different approaches to this treatment 
technique have been developed so far, but no clear advantage 
of any of them is so far evident [3–18]. The analysis by SIOPE-
-BTG showed the benefit of modern radiotherapy techniqu-
es (intensity modulated radiotherapy – IMRT, volumetric arc 
therapy – VMAT or proton beam therapy – PBT), but standard 
(unmodulated) techniques of conformal therapy are still widely 

used in many treatment centres, especially in low-income 
countries [6–8]. 

In this study we evaluated the reproducibility and the ef-
fectiveness of the static-junctions image guided (SJIG) method 
of craniospinal irradiation (CSI) with an emphasis on actual 
treatment delivery implementation, long-term treatment re-
sults and patterns of progression. This method of CSI could be 
useful in low-income countries with a lack of more advanced 
treatment techniques and also in countries in which proton 
beam treatment is not available. It could also be considered 
a paediatric treatment technique because the impact of a low 
dose was associated with dynamic techniques and an integral 
dose is still a matter of debate. 
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Material and methods

Immobilization, imaging and treatment planning
A thermoplastic mask (Orfit by Stanley) was made individually 
for each patient. A computed tomography (CT) covering the 
whole spinal axis was performed with 3–5 mm slices. A fusion 
of the CT with a magnetic resonance of the brain was carried 
out for all the patients. Forty patients were treated, 35 in the 
supine position and 5 in the prone position. 

All the plans were created in the Eclipse Advanced Tre-
atment Planning Software from Varian Medical Systems with 
the pencil beam convolution (Eclipse PBC) or the analytical 
anisotropic algorithm (Eclipse AAA). All the retrospectively 
reviewed plans were created with the AA algorithm version 
8.6. Each patient was irradiated with a 3D image-guided tech-
nique with static junctions between the fields (SJIG) – the field 
dimensions and isocenter positions were constant throughout 
the whole treatment.

The target volume consisted of GTV (gross tumour volu-
me) after the subtotal resection in all cases. The clinical target 
volume (CTV) was defined as the intracranial content and 
thecal sac, including nerve roots. The PTV (planning target 
volume) was created by adding a 5 mm margin to the CTV. 
The dose was prescribed to obtain >95% of the prescribed 
dose in >98% of PTV. 

For all the patients, a single treatment plan with static 
junctions between the fields was made. It consisted of 2–3 
isocentres and 3–7 fields: two opposed lateral fields to treat the 
brain and a part of the cervical spine, and one or two adjoining 
posterior spinal fields to cover the rest of the spinal canal (the 
last one was tilted to match the beam divergence of the main 
spinal field). The first isocentre was located at the level of the 
cranial base, and treatment fields covered the brain and the 
upper part of the cervical spine. The second isocentre was 
located in the lower part of the thoracic spine (one posterior 
field, 180 degrees). The third was used in the case of taller pa-
tients or when the thoracic field did not acceptably cover the 

anterior part of the lumbosacral space. The number of spinal 
fields (and isocentres) depended strictly on the length of the 
PTV due to the limited maximum field size in the Varian system 
which is (with SSD of 100 cm) 40 x 40 cm at the isocentre. All 
the isocentres had the same vertical and lateral coordinates. 
Corrections in longitudinal direction during treatment were 
allowed only in the first isocentre position, corrections in lateral 
and vertical direction were allowed in all isocentres positions. 
The position of treatment fields between the first and the 
second isocentre (the first junction) was matched using the 
rotation of the collimator and treatment couch. The second 
junction (if necessary) was created using the treatment table 
rotation (90 degrees) and adjustment of the gantry rotation 
(fig. 1). This method eliminates overlapping or underdosage 
between the fields. All the treatment plans had dosimetric 
verification before the beginning of treatment.

Treatment process
All the patients were treated on standard linear accelerators 
with energies of 6–20 MV. Verification of the patient’s position 
was performed with the portal view images (PVI) – the earlier 
years of the study or with kilovoltage imaging (kV). To assure 
correct treatment delivery, the couch was moved in a longi-
tudinal axis by a constant value derived from the treatment 
plan, all other shifts were corrected according to the results 
of imaging on the treatment machine.

Review process
All the treatment plans were reviewed by the physician and the 
physicist with regard to the treatment couch movement (and 
the distance between isocentres) between every single field 
of each fraction during all the treatment days, based on the 
data collected during the treatment and saved in the oncology 
information system (Aria). The images (kV or PV) used to verify 
the patient’s position during the treatment were audited for 
all patients. Distances between the positions of the isocentres 
were collected and checked against the planned distances. Each 

Figure 1. The effect of collimation of treatment fields between the first and the second treatment field – the first junction: A – lateral view; B – frontal 
view. C – the effect of the changing of treatment table rotation between the first and second treatment field – the second junction (lateral view)
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shift in the direction towards the head was noted as “+ value” 
and each shift in the direction towards the feet was noted as 
a negative value compared to the planned distance. Based on 
that data and the differences between the planned and the tre-
ated distances between the positions of isocentres, we created 
second (actually treated) plans. The planned (P) and treated (T) 
parameters as dose delivered to particular volume of the PTV 
(%), minimum and maximum dose, mean and median total dose, 
homogeneity index – HI (RTOG) were collected and compared. 

Study endpoints
Overall survival (OS) was evaluated using the Kaplan–Meier 
method. Progression-free survival was measured from the 
date of the end of treatment to the date of local or distant 
progression, or death. The date of death was obtained from 
the National Cancer Registry. Treatment plans were reviewed 
in patients with recurrence of the disease, in order to assess the 
exact location and dose delivered to the relapse site. Toxicity 
was evaluated based on the RTOG/EORTC criteria [19].

Results

Group characteristics
We performed a retrospective analysis of CSI treatment plans 
of 40 patients (27 male and 13 female) with brain tumours 
(22 medulloblastoma, 10 ependymoma, 5 germinoma, 2 pri-
mitive neuroectodermal tumours [PNET], 1 anaplastic oligo-
dendroglioma) treated in our Institution between the years 
2005 and 2014. The study group consisted of 14 children and 

26 adults. The median age was 21 years at the time of diagnosis 
(range: 4–43). All the patients were treated with curative intent, 
including those with metastases in the spinal region, which 
were diagnosed in 4 patients. The mean spine volume was 129 
cm3 and the mean spine length was 57 cm.

Fractionation and doses
Patients were irradiated with a fraction dose (fd) of 1.5–1.8 Gy 
to the spinal regions and 1.5–2.0 Gy to the brain. All but one 
received a two phase treatment: in the first phase, the brain 
and spine were irradiated, in the second, a boost was delive-
red only to the residual tumour or tumour bed. The median 
total dose (TD) in the first phase was 36 Gy and the median 
boost dose was 18 Gy. The PBC algorithm was used in the 
case of 21 patients, AAA in 19. The mean doses delivered to 
the organ at risk were within the range of 0.82–6.82Gy for 
the lenses, 25.33–55.68 Gy for the ears, 13.36–45.26 Gy for 
the parotids, 3.97–31.27 Gy for the thyroid, 1.26–20.23 Gy for 
the heart, 1.39–9.90 Gy for the lungs, 0.35–6.18 Gy for the 
breasts, 2.42–8.85 Gy for the liver, 0.69–14.65 Gy for the bowel, 
0.47–3.88 Gy for the kidneys and 0.14–18.9 1Gy for the bladder. 
Data concerning the delivery of a total number of 902 fractions 
and 1635 isocentre positions was collected. The planned (P) 
and treated (T) parameters are presented in table I. 

Follow-up
During the median follow-up (FU) of 58 months, 10 patients 
died. One-, 2- and 5-year OS was 95%, 89% and 78%, respectively. 
Tumour relapsed in 16 patients – 13 in the brain, 1 in the brain 

Table I. The dosimetric parameters obtained by comparing the original plans and reconstructed dose distribution 

Parameter  % diff % in median dose (P/T)  % diff % in mean dose (P/T) Range

D70% –0.02% –0.20% –5.01% to +7.62%

D75% –0.03% –0.23% –5.91% to +7.01%

D80% –0.03% –0.47% –6.79% to +6.00%

D85% –0.06% –1.06% –10.93% to +4.60%

D90% 0.00% –1.22% –11.93% to +3.54%

D95% –0.01% –1.84% –16.27% to +3.49%

D98% –0.06% –2.43% –25.36% to +3.89%

D2% –0.10% –2.55% –27.75% to +3.21%

Dmin –0.13% –3.73% –30.02% to +4.12%

Dmax 0.04% 2.40% –3.03% to +26.71%

median DTD 0.00% – –4.21% to 8.47%

mean DTD – –0.01% –3.67% to +9.77%

HI(P) 1.22 1.25 1.08 to 1.81

HI(T) 1.25 1.28 1.08 to 1.87

Dmax/Dmin(P) 1.34 1.41 1.13 to 2.10

Dmax/Dmin(T) 1.42 1.51 1.13 to 2.83

Dmax/Dmin(P/T) 0.18 0.11 –0.05% to 1.08%

% diff – (Dose planned–Dose treated)/Dose planned x 100%; Dose n – dose received by certain percentage of the volume of the PTV; range relates to all mesured plans
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of the planned dose delivered, the group with 80–90% of the 
planned dose delivered and the group >90% of the planned 
dose delivered, we observed that patients who had the best 
results were those with the largest mean and median length 
of the spine were: in the group <80%: mean and median were 
63 and 67 cm, in the group 80–90%: mean and median was 
86 cm, and in the group >90%: mean and median was equal 
94 cm. The necessity of sedation of children did not influence 
the deviations observed in table I. 

When discussing the drawbacks of the study, we sho-
uld also mention the histopathological diagnosis of patients 
with ependymoma (which is, unless disseminated, no longer 
an indication for craniospinal irradiation) and 1 patient with 
PNET (which is no longer recognized according to the new 
WHO classification). This fact however does not influence the 
conclusions of the study aimed at the technical aspects of CSI. 

SJIG is safe and produces very good long-term outco-
mes. Treatment planning and delivery is simple and less time 
consuming than the junction-shift techniques, with good 
reproduction of the planned dose distribution during actual 
treatment, assuming that image guidance is available and 
used on a daily basis.
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