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Average glandular doses reported by mammography units: 
how reliable are they?
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Introduction.  Average glandular dose (AGD) values displayed by mammography units are often used to compare doses 
with diagnostic reference levels, with acceptable and achievable dose levels given with in the European guidelines on 
breast cancer screening, or between mammography units. The aim of the work was to check the reliability of displayed 
AGD values by comparing them with independently calculated values.
Material and methods.  The comparison was performed for five mammography units, for 20 groups of patients (50 pa-
tients each), examined in various periods between the years 2015 and 2020. AGD values were calculated independently 
for the same patients using the results of measurements.
Results.  Observed differences between displayed and calculated doses affected their comparison with acceptable and 
achievable dose levels.
Conclusions.  The displayed AGD values should be used with caution. If reliable information on AGD values is needed, 
they should be independently calculated using the results of measurements.
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Introduction
Breast cancer is one of the most common cancers. Mammogra-
phy is widely used in breast cancer screening and diagnosis [1, 
2]. Since mammography uses ionizing radiation, the radiation 
dose is of radiation dose is an important issue. This is true espe-
cially in breast cancer screening, in which examinations are 
performed largely on asymptomatic women [3, 4]. Diagnostic 
reference levels (DRLs) should be established and used in all 
countries belonging to the European Union, and information 
relating to patient exposure should be included in the report 
of the medical radiological procedure [5]. In Poland, an in-
ternal clinical audit should be carried out every year in each 
diagnostic radiology facility. During the audit, data on patient 
exposure should be compared with diagnostic reference levels. 
The data should be included in the internal clinical audit report, 
which is submitted to the procedures and audits’ committee, 

and a copy sent to the National Centre for Radiation Protection 
in Health Care [6].

Radiation dose is expressed in mammography usually 
as the average glandular dose (AGD) [3, 4, 7]. Acceptable 
and achievable dose levels in breast cancer screening, as sti-
pulated in the European guidelines on breast cancer screening, 
are also expressed as average glandular doses [8, 9]. AGD is also 
used in dose monitoring and optimization [10, 11]. In modern 
mammography, the average glandular dose is automatically 
calculated for each exposure and displayed to the operator, as 
well as stored within a header of a DICOM file. The information 
may be gathered by dose management systems, allowing 
further analysis [10]. Average glandular doses are calculated 
by multiplication of air kerma by conversion factors. The co-
nversion factors depend on beam quality, the thickness of the 
compressed breast, and tissue composition (share of adipose 
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and glandular tissue), and they are based on Monte Carlo cal-
culations. Several different methodologies of AGD calculation 
are used in various areas of the world [12]. European guidelines 
on breast cancer screening [8, 9] and the International Atomic 
Energy Agency (IAEA) recommendations [13] endorse the 
methodology described by Dance et al. [14, 15].

The aim of the work was to check the reliability of AGD 
values displayed by mammography units by comparing them 
with values calculated independently with the Dance method, 
based on the measurements.

Material and methods
A dose comparison was performed for five full-field digital 
mammography units of three different manufacturers used in 
our institute (tab. I). For each unit, data was gathered for several 
groups of 50 patients (200 exposures), examined in various 
periods between the years 2015 and 2020 (a total of 20 groups 
of patients), either for screening or diagnosis. The data included 
exposure parameters (anode, filter, tube voltage, tube loading), 
displayed AGD values, compressed breast thickness, and image 
size (18 x 24 cm2 or 24 x 30 cm2). Depending on the period, the 
data were either noted manually or taken from the headers 
of DICOM files (e.g. AGD is stored in the DICOM header in the 
“organ dose” tag, coded [0040,0316]).

Several measurements were made in each period, pro-
viding the data necessary for an independent calculation of 
AGD. Air kerma and half-value layer values were measured 
for all clinically used beam qualities with the Piranha Black 

657 meter (RTI Electronics AB, Sweden). Additionally, tests 
of thickness indicator accuracy were performed according 
to international guidelines [8, 9, 13], and separately for small 
and large compression plates. Several 18 × 24 cm slabs of 
polymethylmethacrylate (PMMA) were used for the test, with 
thickness ranging from 2 cm to 7 cm. The results of the test 
were then used to correct data on breast thickness.

Individual average glandular doses were calculated in-
dependently for patients, using Dance’s method [8, 9, 14–16] 
and an in-house Excel spreadsheet. Actual exposure parame-
ters, corrected breast thickness data, and the results of tube 
output measurements were used to calculate incident air 
kerma. Information on beam quality (anode/filter/HVL) and 
corrected breast thickness were used to obtain conversion 
factors. Since the conversion factors are given only for discrete 
thickness and HVL values, linear interpolation was used. 

For each group of patients, displayed and calculated doses 
were cross-compared, and compared with achievable and ac-
ceptable dose levels as outlined in the European guidelines on 
breast cancer screening [8, 9], including an update published 
on the website of the European Reference Organisation for Qu-
ality Assured Breast Screening and Diagnostic Services (EUREF) 
in 2017 [16]. The number of cases, where the displayed and 
calculated doses do not exceed the acceptable and achievable 
dose levels, was calculated as a percentage of all evaluated ca-
ses. Displayed AGD values were compared against dose levels 
calculated for the displayed breast thickness, while calculated 
AGD values were compared against dose levels calculated for 
corrected breast thickness. Since the acceptable and achieva-
ble dose levels are given only for discrete thickness values, they 
were interpolated with a second-degree polynomial.

Results
The summary of the results is presented in table II. The maxi-
mum difference between the displayed and calculated doses 
in a group of 50 patients was equal to 0.41 mGy (22% of the 
average dose calculated for that group). Figures 1–3 present 

Table I. Mammography units used in the comparison

Code Mammography unit type Year of installation

A Siemens Mammomat Inspiration 2010

B Siemens Mammomat Inspiration 2011

C Siemens Mammomat Inspiration 2011

D GE Pristina 2018

E Hologic Selenia 2007

Table II. Summary of results of dose comparison

Group Unit Year/month Mean AGD [mGy] % of doses ≤ acceptable level % of doses ≤ achievable level

Calculated 
values

Displayed 
values

Mean 
difference

Calculated 
values

Displayed 
values

Calculated  
values

Displayed 
values

#1 A 2016/01 1.43 1.39 -0.04 99% 99% 94% 92%

#2 A 2019/03 1.18 1.16 -0.02 100% 100% 100% 100%

#3 B 2015/06 1.30 1.38 0.08 97% 95% 91% 82%

#4 B 2016/07 1.37 1.51 0.13 100% 100% 100% 84%

#5 B 2018/11 1.18 1.17 0.00 100% 100% 97% 97%

#6 B 2019/06 1.05 1.12 0.06 100% 100% 100% 100%

#7 B 2020/07 1.03 1.12 0.09 100% 100% 99% 98%

#8 C 2015/06 1.29 1.32 0.03 98% 97% 95% 92%

#9 C 2016/07 1.31 1.31 0.00 99% 100% 99% 97%

#10 C 2018/11 1.05 1.20 0.14 100% 100% 100% 100%
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a comparison of displayed and calculated doses with achie-
vable and acceptable dose levels for three patient groups 
examined on three different units. The same scaling was ap-
plied on all figures to allow comparisons between them. For 
data presented in figure 1, the average difference between 
displayed and calculated doses is relatively large, as it equals 
14% of the calculated doses. Despite the differences, all doses 
(both displayed and calculated) are lower than acceptable 
and achievable dose levels. For data presented in figure 2, 
the average dose difference expressed as a percentage of the 
calculated dose is smaller (9%), but the difference influences 
the result of the dose assessment. For the displayed values, 
achievable dose levels are not exceeded in 96% of cases, but 
for the calculated values, it is only 69%. For the data presented 
in figure 3, the average difference of doses is close to zero (1%), 
but the relatively large inaccuracy of the thickness indicator 
changes the result of dose evaluation, as the same doses are 
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Figure 2. Comparison of displayed and calculated AGD values with 
acceptable and achievable dose levels for group #13 (GE Senographe 
Pristina unit)
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Figure 3. Comparison of displayed and calculated AGD values with 
acceptable and achievable dose levels for group #20 (Hologic Selenia 
unit)

Group Unit Year/month Mean AGD [mGy] % of doses ≤ acceptable level % of doses ≤ achievable level

Calculated 
values

Displayed 
values

Mean 
difference

Calculated 
values

Displayed 
values

Calculated  
values

Displayed 
values

#11 C 2019/09 1.14 1.27 0.13 100% 100% 100% 97%

#12 C 2020/07 1.23 1.37 0.14 100% 100% 100% 98%

#13 D 2018/11 1.72 1.55 –0.17 97% 100% 69% 96%

#14 D 2019/09 1.55 1.39 –0.17 100% 100% 92% 100%

#15 D 2020/07 1.52 1.30 –0.22 99% 100% 93% 100%

#16 E 2015/05 1.96 2.09 0.13 49% 86% 3% 33%

#17 E 2016/07 1.80 2.21 0.41 58% 58% 26% 17%

#18 E 2016/10 1.80 2.05 0.25 67% 73% 36% 46%

#19 E 2018/08 2.13 2.04 -0.09 68% 79% 31% 59%

#20 E 2019/03 2.07 2.10 0.03 66% 81% 34% 48%
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Figure 1. Comparison of displayed and calculated AGD values 
with acceptable and achievable dose levels for group #10 (Siemens 
Mammomat Inspiration unit)
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Discussion
Even a relatively large difference between the calculated 
and displayed dose values may not influence the compari-
son of doses with dose limits if the doses are low (fig. 1). On 
the other hand, a small difference may strongly affect the 
results of the evaluation if doses are close to the limits (fig. 2). 
The correction of breast thickness has a twofold effect on dose 
calculations [17]. Firstly, it has an impact on the calculated 
distance between the focal spot and beam entrance, thus 
affecting incident air kerma. Secondly, it has an impact on the 
conversion factors, which are dependent of breast thickness. 
Finally, it also has an impact on the effect of dose evaluation, 
as the dose limits are dependent on thickness (fig. 3). In the 
European Guidelines, the acceptable difference in thickness 
indication is ±5 mm [8, 9], while in the IAEA guidelines it is 
as much as ±8 mm [13]. Different vendors may use different 
methods for thickness indicator calibration; thus differences 
of a few mm can be expected. The discrepancies may be 
different for different beam qualities (fig. 5), and the compari-
son of displayed AGD values between different units may be 
misleading (fig. 4).

The differences between displayed and calculated values 
result from various factors. Aside from the inaccuracy of the 
thickness indicator, displayed values are determined using tube 
output data and HVL values stored in the software of mam-
mography units. Since air kerma and half-value layer values 
may change over time, in this research they were measured 
independently in each assessed period. Such measurements 
are repeated in our institute every year and after each major 
service maintenance (e.g. tube replacement, detector repla-
cement, detector calibration performed by service) to keep 
the calculated values reliable.

Calculated values also have limited accuracy. Measure-
ment uncertainty of calculated AGD values may be as large as 
14–20% [18, 19]. However, all the measurements and calcula-
tions presented in the current work were at least performed with 
the same methods and equipment. Testing thickness indicator 
accuracy with rectangular PMMA may not be equivalent to 
the clinical situation, but it was performed in the same way for 
all units. The same radiation detector, the same formulas, and 
conversion coefficients were used in all calculations. That said, 
methods used by different vendors to determine displayed 
AGD values are not described in detail. Additionally, while to 
our knowledge Dance’s method was used by all vendors in our 
study, several other methods exist [12]. Another breast dosimetry 
method is under development by one group, which is simulta-
neously an American Association of Physicists in Medicine task 
group (AAPM TG282) and a working group of the European 
Federation of Organisations for Medical Physics (EFOMP). Ultima-
tely, this may result in the standardization of methods, but during 
the transitional period there will be even more methods in use.

In the case of screening examinations, patient groups 
consist of asymptomatic women. Breasts have typical structure, 

compared with a lower dose limit (calculated for the corrected 
breast thickness).

Figure 4 presents a comparison of doses for two groups 
of patients examined on two different mammography units, 
separately for the displayed and calculated doses. For the 
displayed doses, the average and median are lower for the GE 
unit. The opposite is observed for the calculated doses. Figure 5 
presents a comparison of displayed and calculated doses for 
one patient group, separately for two filtrations (Mo and Rh). 
The calculated values are mostly within ±5% of the displayed 
values for one anode/filter combination (Mo/Mo), while for 
the other one (Mo/Rh), the calculated values are on average 
14% lower than the displayed values.
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Figure 4. Comparison of displayed and calculated AGD values for two 
patient groups examined on different units (Siemens Mammomat 
Inspiration #12 and GE Senographe Pristina #15)

Figure 5. Comparison of displayed and calculated doses for one patient 
group (#16, Hologic Selenia unit), separately for two filtrations (Mo and 
Rh)
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and the dose generally raises with breast thickness (e.g. fig. 1). 
In diagnostic examinations, lesions of various types may be 
presented in the breast [20]. Patient groups are less uniform, 
which may explain the presence of outliers in dose distribution 
(fig. 3). Relatively small groups of patients which were used in 
the work were enough to compare displayed and calculated 
doses and to prove that the effects of such comparison will 
be different for different mammography units. The presented 
results may not fully represent the distribution of doses for all 
women examined with a given mammography unit. Larger 
datasets maybe needed for evaluation of patient doses, for 
dose optimization, or to establish reference dose levels. In ge-
neral, AGD values could be independently calculated for each 
exposure, based on the measured HVL and air kerma values, 
and using corrections of thickness readings. This would make 
it possible to include reliable information on patient exposure 
in the report of the medical radiological procedure.

Other researchers reported similarly: for a given method, diffe-
rences between the displayed and calculated dose for a standard 
breast may reach 18% [12]. The situation may be similar in other 
X-ray imaging modalities. Documents published by the European 
Commission allow for relatively high uncertainty  for DAP/KAP 
(dose/kerma-area product) meters, which provide patient expo-
sure information in radiography and fluoroscopy (acceptability 
limit is ±25% for radiography, ±35% for fluoroscopy) [21]. It is also 
known that the energy response of a DAP/KAP meter may vary 
by 20% between the different beam qualities (different kVp and 
filtration settings) [22]. In computed tomography, it is expected 
that there will be agreement between measured and displayed 
computed tomography dose index (CTDI) within ±20% [21]. 
Discrepancies higher than 20% are occasionally observed, espe-
cially for low kV values [23]. Besides, the definition of CTDI has 
changed over time, and different CT models may use different 
definitions [24]. Recently, the size-specific dose estimate (SSDE) 
is gaining popularity in CT. While it is not yet routinely reported 
by CT scanners, it may be calculated by dose management sys-
tems. However, various methods may be used for it, which leads 
to different results [25]. The differences may affect comparisons 
of dose quantities with DRLs and between units in a similar way 
as in mammography.

Conclusions
The observed differences between displayed and calculated 
doses can affect the results of comparison of doses with ac-
ceptable and achievable dose levels, DRLs, or comparisons 
between different units in various ways, depending on dose 
levels and the type of mammography unit. If reliable infor-
mation on average glandular dose is needed, e.g. for quality 
audit purposes, the values should be independently calculated 
using current results of measurements. The displayed values 
should be used with caution, and the uncertainty of displayed 
doses and compressed breast thickness should be taken into 
account.
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