open access

Vol 25, No 1 (2021)
Review paper
Published online: 2020-11-12
Get Citation

The evolutionary development of the renin angiotensin aldosterone system and its importance for the survival of the human species

Natalia Butt-Hussaim1, Jacek Manitius1
·
Arterial Hypertension 2021;25(1):1-12.
Affiliations
  1. Department of Nephrology, Hypertension and Internal Diseases, Dr. A. Jurasz University Hospital No. 1 in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bygoszcz

open access

Vol 25, No 1 (2021)
REVIEW
Published online: 2020-11-12

Abstract

Kidneys produce a number of substances that affect intrarenal blood circulation; however, the key system that regulates blood flow in both general and local circulation (including the renal circulation) is the renin-angiotensinaldosterone system (RAAS). Individual elements of the RAA system are synthesized in separate tissues of the body under the influence of specific local factors. The system functions as a whole due to mutual relations based on feedback and it consists of three basic elements: renin, angiotensin and aldosterone.

The history of research on the RAA system dates back to the late 19th century. One of the important stages of exploring the mechanisms related to RAA system functioning was the publication (in 1898) of the results of research on the hypertensive effect on blood pressure of rabbit kidney extracts (containing renin). The observations from 1934 were of similar significance: the correlation between dog kidney ischaemia and the occurrence of hypertension was found.

In the following years, the enzymatic properties and structure of renin and angiotensin peptides, resulting from the
action of renin and the enzyme converting angiotensin I (Ang I) to its active form — angiotensin II (Ang II), were clarified. The latter belongs to the most important regulators of aldosterone secretion. In 1939, it was proved that
under the influence of renin blood pressure-rising peptides are formed. Consequently, it was documented that angiotensin
was the cause of hypertension in animals with ischaemic kidney, and in 1954 the sequence of angiotensin I and II was described. In 1960–1961 systemic RAA occurrences were identified.

However, to provide the insight of evolutionary significance of the RAA system for humans, the phylogenetic development of this enzyme-endocrine system in vertebrates should be investigated. The largest database of information regarding this system in the aforementioned group of animals is the research of Hirofumi Sokabe and Hiroko Nishimura, which, among others, is the basis for this manuscript.

Abstract

Kidneys produce a number of substances that affect intrarenal blood circulation; however, the key system that regulates blood flow in both general and local circulation (including the renal circulation) is the renin-angiotensinaldosterone system (RAAS). Individual elements of the RAA system are synthesized in separate tissues of the body under the influence of specific local factors. The system functions as a whole due to mutual relations based on feedback and it consists of three basic elements: renin, angiotensin and aldosterone.

The history of research on the RAA system dates back to the late 19th century. One of the important stages of exploring the mechanisms related to RAA system functioning was the publication (in 1898) of the results of research on the hypertensive effect on blood pressure of rabbit kidney extracts (containing renin). The observations from 1934 were of similar significance: the correlation between dog kidney ischaemia and the occurrence of hypertension was found.

In the following years, the enzymatic properties and structure of renin and angiotensin peptides, resulting from the
action of renin and the enzyme converting angiotensin I (Ang I) to its active form — angiotensin II (Ang II), were clarified. The latter belongs to the most important regulators of aldosterone secretion. In 1939, it was proved that
under the influence of renin blood pressure-rising peptides are formed. Consequently, it was documented that angiotensin
was the cause of hypertension in animals with ischaemic kidney, and in 1954 the sequence of angiotensin I and II was described. In 1960–1961 systemic RAA occurrences were identified.

However, to provide the insight of evolutionary significance of the RAA system for humans, the phylogenetic development of this enzyme-endocrine system in vertebrates should be investigated. The largest database of information regarding this system in the aforementioned group of animals is the research of Hirofumi Sokabe and Hiroko Nishimura, which, among others, is the basis for this manuscript.

Get Citation

Keywords

renin; angiotensin; angiotensin; aldosterone; vertebrates

About this article
Title

The evolutionary development of the renin angiotensin aldosterone system and its importance for the survival of the human species

Journal

Arterial Hypertension

Issue

Vol 25, No 1 (2021)

Article type

Review paper

Pages

1-12

Published online

2020-11-12

Page views

885

Article views/downloads

740

DOI

10.5603/AH.a2020.0021

Bibliographic record

Arterial Hypertension 2021;25(1):1-12.

Keywords

renin
angiotensin
angiotensin
aldosterone
vertebrates

Authors

Natalia Butt-Hussaim
Jacek Manitius

References (6)
  1. Cowley AW. Long-term control of arterial blood pressure. Physiol Rev. 1992; 72(1): 231–300.
  2. Goldblatt H, Lynch J, Hanzal RF, et al. Studies on experimental hypertension : I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934; 59(3): 347–379.
  3. Guyton AC. Blood pressure contro — special role of the kidneys and body fluids. Science. 1991; 252(5014): 1813–1816.
  4. Marks LS, Maxwell MH. Tigerstedt and the discovery of renin. An historical note. Hypertension. 1979; 1(4): 384–388.
  5. Nishimura H. Renin–angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int. 2017; 92(2): 215–247.
  6. Sokabe H. Phylogeny of the renal effects of angiotensin. Kidney Int. 1974; 6(5): 263–271.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl