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Abstract

The number of articles regarding microcirculation dysfunction in the literature increases. One should bear them in 
mind especially in case of patients, who declare typical angina, and in whom during coronary angiography we do 
not reveal significant lesions in coronary arteries. Arterial hypertension is one of diseases, which may contribute to 
microcirculation dysfunction and vessels remodeling. In this short review, we discuss possible mechanism of above-
mentioned disturbances.
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Introduction
In 2010, arterial hypertension (HTN) was diag-
nosed in almost 1/3 of the adult population in the 
world. It is believed that this is the most common 
cause of premature deaths that can be prevented [1, 
2]. The heart is one of organs that is damaged in the 
course of HTN. The increase in the afterload caused 
by the increased peripheral pressure leads, among 
others, to left ventricular hypertrophy. Initially, this 
is an adaptive change that allows the heart to main-
tain the cardiac output when the pressure over-
load increases. However, long-lasting HTN leads 
to cardiomyocyte inotropic and lusitropic function 
impairment, which may lead to left ventricular dys-
function and the development of heart failure [3]. 
These changes, aimed at adapting to the altered con-

ditions, which is the increase in the afterload, lead 
to the so-called myocardium remodeling [4]. Re-
modeling is the response of the tissue to mechanical, 
neurohormonal, inflammatory and oxidative stimuli 
[5]. It is worth emphasizing that if we accept the 
occurrence of left ventricular hypertrophy as a cat-
egorical variable, we will find in the literature data 
showing its relationship with a  significant increase 
in the risk of coronary heart disease, heart failure 
(especially with preserved systolic function), stroke, 
arrhythmia and sudden death [6]. In addition, re-
cently in the literature the issue of the association 
between coronary microcirculation and remodeling 
with myocardial infarction in patients who have no 
lesions or have insignificant lesions in epicardial 
arteries is frequently raised [7]. In this review, we 
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would like to present the current state of knowledge 
on coronary microcirculation disorders occurring 
in the group of patients with HTN, their possible 
etiology and potential consequences.

Physiological conditions
The vessel wall is constantly exposed to tension and 
shear stress. The pressure acting on the vessel wall 
causes so-called muscle tension, while the shearing 
stress causes the vasodilatation associated with the 
blood flow. It is the shear stress that is one of the 
factors regulating the expression of genes involved in 
the production of factors responsible for both vasodi-
latation (including nitric oxide or prostacyclin), and 
vasoconstriction (including endothelin 1, angioten-
sin II) [8–10]. Under physiological conditions, when 
dealing with the basic vessel wall tension regulated 
by the adrenergic system, the above-mentioned va-
soactive substances regulate the blood flow [7]. It is 
worth noting, however, that in diseased conditions, 
when long-lasting changes in pressure or flow are 
observed, vasoactive substances are partly responsible 
for remodeling, because they regulate the function of 
the vessel wall smooth muscles and the extracellular 
matrix [7]. What is more, in diseases such as HTN, 
we often observe decrease in vasodilatation dependent 
on vasodilating substances released from the endothe-
lium. This is due to the limitation of the nitric oxide 
bioavailability, which may be related to the decrease 
in the activity of nitric oxide endothelial synthetase, 
and partly to the direct reduction of the amount of 
nitric oxide by reactive oxygen species [11–13].

At this point it is worth recalling differences pres-
ent in the coronary circulation. This vessel bed is 
filled mainly during diastole, and the flow is regu-
lated by locally produced metabolites, the autonomic 
system and the structure of vessel bed itself [7]. In 
addition, it should be also remembered that accord-
ing to the Poiseuille’s law the blood flow through the 
vessel is directly proportional to the radius of the 
vessel raised to the fourth power, and therefore even 
small changes in the diameter of the vessel can cause 
a significant reduction in the flow [7].

Pathophysiological processes occurring 
in the coronary microcirculation

Microcirculation comprises of vessels with internal 
diameter below 150–200 μm. It should be empha-
sized that the essence of coronary artery disease is 
different, where we deal mainly with atherosclerotic 

plaques occurring in large epicardial arteries, and 
significant dysfunction of coronary microcirculation, 
where both structural and functional changes occur 
within the vessel bed [7]. It is believed that changes 
in the microcirculation caused by HTN can be mani-
fested in two ways:

 — as “dilution” of the vascular network — low den-
sity of arterioles, capillaries and probably also 
veins;

 — as “remodeling” — changes in the structure of 
small arteries and arterioles, which lead to the 
reduction of the vessel’s lumen.
Both hyperplasia and hypertrophy as well as the 

altered smooth muscle cell system cause narrowing 
of the vessel’s lumen by entering of the middle layer 
of the vessel’s wall into its lumen [5]. This results, 
among others, in reducing the total lumen of the 
intramural arterioles on the myocardial section [5]. 
The “dilution” of the vascular network may be due 
to an insufficient increase in the number of blood 
vessels during myocardium mass growth. All these 
changes, together with appearing perivascular fi-
brosis, result in limiting the coronary reserve in this 
group of patients [14]. It is also worth noting that 
in the case of patients with HTN there are different 
“types” of remodeling, depending on the type of 
vessels they refer to. In the case of small resistance 
arteries, eutrophic or hypertrophic remodeling usu-
ally occurs, whereas in large arteries we usually 
encounter hypertrophic remodeling, which leads 
to reduction in the cross-sectional area of the ves-
sel [15]. Moreover, in the literature there are data 
on the different course of remodeling of micro-
circulation in case of coronary vessels (concentric 
remodeling) than in mesenteric vessels (eccentric 
remodeling), and therefore it can be concluded that 
the pattern of changes also depends on the type of 
the vessel bed [7]. In case of patients with HTN, 
changes in the microcirculation also depend on the 
severity of the disease — eutrophic remodeling in 
case of moderate HTN and hypertrophic remodel-
ing in case of severe type of the disease [16,  17]. 
In addition, it is suggested that changes in the mi-
crocirculation may occur at an earlier stage of the 
disease than the changes observed in large vessels. 
They may occur, among others, in the metabolic 
syndrome, one of which HTN is an element [7]. It 
should also be remembered that currently there are 
no methods allowing for a quantitative assessment 
of the microcirculation function. The assessment of 
the coronary flow reserve is proposed as one of the 
tools allowing to assess microcirculatory dysfunc-
tion in patients, in whom during coronary angiog-
raphy no significant lesions were revealed [18, 19].
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Nitric oxide
Nitric oxide synthase is responsible for NO pro-
duction. This enzyme has many isomers, including 
endothelial one. Nitric oxide is formed in response 
to shear stress acting on the vessel wall or activation 
of receptors by vasoactive molecules, such as ace-
tylcholine or adenosine [7]. Apart from regulating 
the vascular wall tension, this compound also plays 
a role in remodeling of the vascular wall by inhibit-
ing the vessel wall smooth muscle proliferation and 
by regulating the expression of extracellular protein 
[20, 21]. Nitric oxide also maintains the elasticity of 
the vessel wall and prevents it from stiffening [22]. 
Numaguchi and colleagues in the rat model showed 
that the pharmacological blockade of nitric oxide 
synthetase led to the development of HTN with 
remodeling of coronary microcirculation (includ-
ing perivascular fibrosis). In addition, these authors 
suggested that vascular remodeling was associated 
in that case with limited bioavailability of nitric 
oxide since pharmacological normalization of arte-
rial blood pressure did not prevent remodeling [23]. 
Moreover, the deletion of the gene for endothe-
lial nitric oxide synthetase led to an increase in the 
thickness of the vessel wall [20]. It was also shown 
that in the population of animals with HTN, asym-
metric dimethylarginine — an endogenous nitric 
oxide inhibitor — was increased, which was also 
associated with coronary microvascular remodeling 
[24]. Decreasing the concentration of asymmetric 
dimethylarginine caused a  decrease in remodeling 
[25]. The bioavailability of nitric oxide can also be 
limited by increasing the activity of arginase — an 
enzyme competing with nitric oxide synthetase for 
a  substrate such as arginine. Increased activity of 
this enzyme is observed, among others, in the case 
of HTN [13, 26].

Reactive oxygen species
Physiologically, low concentrations of reactive oxy-
gen species are maintained, however, in diseased 
conditions, their increased production may con-
tribute to endothelial dysfunction and vessel re-
modeling. Increased concentrations of reactive oxy-
gen species may be caused by both, their increased 
production and the limitation of their distribution 
[27, 28]. These compounds participate in remodel-
ing, which growth factors such as platelet-derived 
growth factor and transforming growth factor beta 
are mainly responsible for [29]. Moreover, reactive 

oxygen species also regulate vascular wall tension, 
among others, by intensifying the proliferation and 
migration of smooth muscle in the vascular wall 
and changes in the composition of the extracellular 
matrix [27, 30].

The renin–angiotensin–aldosterone 
system

Angiotensin II is considered to be the main bioac-
tive element of this system. Through various mecha-
nisms it helps to maintain the appropriate blood 
pressure. One of them is the vasodilator effect by 
affecting the vessel wall smooth muscles. This protein 
is also strongly associated with vascular remodeling 
— it causes hypertrophy and hyperplasia [31]. This 
activity is associated with numerous cellular signal 
transduction pathways through the angiotensin type 
1 receptor. It intensifies proliferation, fibrosis and 
proinflammatory signals, which in turn causes pro-
gression of the disease [7]. Cousin and colleagues 
showed that the use of both angiotensin converting 
enzyme inhibitors and angiotensin type 1 receptor 
antagonists prevented hypertrophy of mesenteric ar-
tery walls in rats [32].

It is also worth emphasizing that activation of the 
angiotensin type 2 receptor induces the opposite ef-
fect as compared to the activation of the type 1 recep-
tor for this protein, which makes it a potential target 
for the treatment [33]. Another protein associated 
with this system is angiotensin (1–7), which, when 
bound to the type 1 receptor, has the opposed activ-
ity to angiotensin II. In the literature there are also 
reports suggesting that angiotensin (1–7) prevents 
from vascular remodeling [34, 35].

Endothelin 1
Just like angiotensin II, endothelin 1 is an important 
protein regulating the vascular wall tension and par-
ticipates in the remodeling observed in diseases such 
as HTN [36]. Under physiological conditions, bind-
ing of endothelin 1 to its A-type receptor (located 
mainly on smooth muscle cells of the vessel wall) 
causes vasoconstriction. Binding this molecule to the 
B-type receptor (which is located mainly on endo-
thelial cells) causes vasodilatation by increasing the 
production of nitric oxide [37]. In disease states, we 
are dealing with an increase in the concentration of 
endothelin 1 and its receptors located on vessel wall 
smooth muscle cells [37]. Like angiotensin II, endo-
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thelin 1 causes the activation of numerous signaling 
pathways, resulting in increased proliferation, migra-
tion and fibrosis [31]. In addition, endothelin 1 may 
participate in vascular remodeling by regulating cell 
wall metalloproteinases and causing changes in extra-
cellular matrix composition (including increasing the 
amount of collagen) [38, 39].

Advanced glycation end products
These compounds are proteins and fats that undergo 
glycation after exposure to carbohydrates. Their pres-
ence is associated with a number of complications, 
both micro- and macrovascular. They promote col-
lagen accumulation and increase stiffness of tissues 
[40, 41]. Liu and colleagues in the HTN rat model 
showed that in this disease the increased concentra-
tion of both advanced glycation end products and 
receptors for them was observed. It was associated 
with endothelial dysfunction and vascular hypertro-
phy probably caused by increased smooth muscle 
vessel wall proliferation and increased deposition 
of collagen. This effect was caused by activation of 
the tissue renin-angiotensin-aldosterone system, in-
creased concentration of reactive oxygen species and 
proinflammatory proteins [42].

Inflammatory state
Immune system cells, such as macrophages or T lym-
phocytes, play an important role in vascular remodel-
ing and endothelial dysfunction [43, 44]. The pro-
inflammatory cytokines and interleukins produced 
by these cells contribute to remodeling [44]. Activa-
tion of NF-kB-transcription-factor-dependent path-
ways by pro-inflammatory substances is associated 
with augmentation of numerous pathways leading 
to vascular remodeling (including those involving 
angiotensin II, reactive oxygen species, endothelin 
1, or advanced glycation end products) [7]. In the 
literature, we also find reports that NF-kB directly 
activates the vessel wall smooth muscle prolifera-
tion and causes changes in their phenotype [7, 45]. 
Moreover, NF-kB also promotes the disease progres-
sion by increasing the expression of proinflammatory 
cytokines and adhesion molecules [46].

Conclusions
It seems that changes in the microcirculation oc-
cur at an earlier stage of the disease than changes 

in epicardial arteries. Further, detailed studies are 
necessary for better understanding the mechanisms 
of formation of abnormalities in the coronary mi-
crocirculation. This will probably allow for better 
control of cardiovascular complications occurring 
in the group of patients with HTN as well as with 
other cardiovascular diseases. Understanding these 
mechanisms is especially important in the group of 
patients in whom we do not observe significant le-
sions in coronary angiography, and who present with 
typical angina.
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