open access

Vol 49, No 5 (2017)
Review articles
Published online: 2017-12-28
Submitted: 2017-12-08
Accepted: 2017-12-27
Get Citation

Molecular mechanisms of bacterial infection of central nervous system

Marta Rzaska, Seweryn Niewiadomski, Zbigniew Karwacki
DOI: 10.5603/AIT.2017.0080
·
Pubmed: 29286530
·
Anaesthesiol Intensive Ther 2017;49(5):387-392.

open access

Vol 49, No 5 (2017)
Review articles
Published online: 2017-12-28
Submitted: 2017-12-08
Accepted: 2017-12-27

Abstract

Central nervous system (CNS) infections may involve the meninges, brain and/or spinal cord. The most common etiologic agents are Streptococcus pneumoniae, group B Streptococci, Neisseria meningitidis, Haemophilus influenzae, and Listeria monocytogenes. CNS is characterized by specific structure and function. Despite a unique system of brain barriers and autonomous immune system, CNS is very susceptible to microorganisms which may invade directly, via the blood, or less frequently by reverse axonal transport. The complex process of bacteria and activated polymorphonuclear leukocyte transfer to the subarachnoid space, which is devoid of natural immune defence mechanisms, initiates an inflammatory response that subsequently spreads to the brain tissue. Consequences of these changes include damage to the blood-brain barrier, development of vasogenic cerebral oedema, and intracranial pressurevolume disturbances leading to impaired CNS perfusion.

Abstract

Central nervous system (CNS) infections may involve the meninges, brain and/or spinal cord. The most common etiologic agents are Streptococcus pneumoniae, group B Streptococci, Neisseria meningitidis, Haemophilus influenzae, and Listeria monocytogenes. CNS is characterized by specific structure and function. Despite a unique system of brain barriers and autonomous immune system, CNS is very susceptible to microorganisms which may invade directly, via the blood, or less frequently by reverse axonal transport. The complex process of bacteria and activated polymorphonuclear leukocyte transfer to the subarachnoid space, which is devoid of natural immune defence mechanisms, initiates an inflammatory response that subsequently spreads to the brain tissue. Consequences of these changes include damage to the blood-brain barrier, development of vasogenic cerebral oedema, and intracranial pressurevolume disturbances leading to impaired CNS perfusion.
Get Citation

Keywords

neuroinfection; astrocyte; microglia; blood–brain barrier; brain, oedema

About this article
Title

Molecular mechanisms of bacterial infection of central nervous system

Journal

Anaesthesiology Intensive Therapy

Issue

Vol 49, No 5 (2017)

Pages

387-392

Published online

2017-12-28

DOI

10.5603/AIT.2017.0080

Pubmed

29286530

Bibliographic record

Anaesthesiol Intensive Ther 2017;49(5):387-392.

Keywords

neuroinfection
astrocyte
microglia
blood–brain barrier
brain
oedema

Authors

Marta Rzaska
Seweryn Niewiadomski
Zbigniew Karwacki

References (46)
  1. He T, Kaplan S, Kamboj M, et al. Laboratory diagnosis of central nervous system infection. Curr Infect Dis Rep. 2016; 18(11): 35–53.
  2. Tikhomirov E, Santamaria M, Esteves K. Meningococcal disease: public health burden and control. World Health Stat Q. 1997; 50(3-4): 170–177.
  3. New advances in the pathogenesis and pathophysiology of bacterial meningitis. Curr Infect Dis Rep. 2000; 2(4): 332–336.
  4. Tunkel AR, Scheld WM. Acute bacterial meningitis. The Lancet. 1995; 346(8991-8992): 1675–1680.
  5. Barker R, Wharton S. Infection in brain damage. In: Fawcett JW, Rosser AE, Dunnett SB. ed. Brain repair. Oxford University Press 2001: 55–78.
  6. Wizemann TM, Heinrichs JH, Adamou JE, et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun. 2001; 69(3): 1593–1598.
  7. Zhang JR, Mostov KE, Lamm ME, et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell. 2000; 102(6): 827–837.
  8. Li S, Kelly SJ, Lamani E, et al. Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J. 2000; 19(6): 1228–1240.
  9. Morona JK, Morona R, Miller DC, et al. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in streptococcus pneumoniae. Mol Microbiol. 2000; 35(6): 1431–1442.
  10. Tuomanen E. Entry of pathogens into the central nervous system. FEMS Microbiol Rev. 1996; 18(4): 289–299.
  11. Risau W, Esser S, Engelhardt B. Differentiation of blood-brain barrier endothelial cells. Pathol Biol (Paris). 1998; 46(3): 171–175.
  12. Rubin LL, Staddon JM. THE CELL BIOLOGY OF THE BLOOD-BRAIN BARRIER. Annual Review of Neuroscience. 1999; 22(1): 11–28.
  13. Li JY, Boado RJ, Pardridge WM. Blood-brain barier genomics. J Cereb Blood Flow Metab. 2001; 21(1): 61–68.
  14. Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol. 1999; 5(6): 556–569.
  15. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000; 20(1): 57–76.
  16. Gloor SM, Wachtel M, Bolliger MF, et al. Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev. 2001; 36(2-3): 258–264.
  17. Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995; 14(1): 1–13.
  18. Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000; 59(7): 561–574.
  19. Smith AL. Pathogenesis of Haemophilus influenzae meningitis. Pediatr Infect Dis J. 1987; 6(8): 783–786.
  20. Zwijnenburg PJ, van De, Florquin S, et al. Experimental pneumococcal meningitis in mice model of intranasal infection. J Infect Dis. 2001; 183: 1143–1146.
  21. Cundell DR, Gerard NP, Gerard C, et al. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 1995; 377(6548): 435–438.
  22. Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest. 1998; 102(2): 347–360.
  23. Simberkoff MS, Moldover NH, Rahal J. Absence of detectable bactericidal and opsonic activities in normal and infected human cerebrospinal fluids. A regional host defense deficiency. J Lab Clin Med. 1980; 95(3): 362–372.
  24. Stahel PF, Nadal D, Pfister HW, et al. Complement C3 and factor B cerebrospinal fluid concentrations in bacterial and aseptic meningitis. Lancet. 1997; 349(9069): 1886–1887.
  25. Smith H, Bannister B, O'Shea MJ. Cerebrospinal fluid immunoglobins in meningitis. Lancet. 1977; 2: 591–593.
  26. Kubes P, Ward PA. Leukocyte recruitment and the acute inflammatory response. Brain Pathol. 2000; 10(1): 127–135.
  27. Tang T, Frenette PS, Hynes RO, et al. Cytokine-induced meningitis is dramatically attenuated in mice deficient in endothelial selectins. J Clin Invest. 1996; 97(11): 2485–2490.
  28. Weber JR, Angstwurm K, Bürger W, et al. Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol. 1995; 63(1): 63–68.
  29. Akira S. Toll-like receptors and innate immunity. Advances in Immunology. 2001: 1–56.
  30. Scheld WM, Koedel U, Nathan B, et al. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis. 2002; 186 Suppl 2: S225–S233.
  31. Koedel U, Scheld M, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. The Lancet Infect Dis. 2002: 721–736.
  32. Xiao F. Bench to bedside: brain edema and cerebral resuscitation: the present and future. Acad Emerg Med. 2002; 9(9): 933–946.
  33. Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998; 54(1): 99–125.
  34. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996; 19(8): 312–318.
  35. Morioka T, Kalehua AN, Streit WJ. Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia. Acta Neuropathol. 1992; 83(2): 149–157.
  36. Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994; 53(3): 213–220.
  37. Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci. 2000; 12(10): 3505–3520.
  38. Cechetto DF. Role of nuclear factor kappa B in neuropathological mechanisms. In: Castellano-Lopez BF, Nieto-Sampedro M. ed. Glial cell function. Elsevier , Amsterdam, London, New York, Oxford, Paris, Shanon, Tokyo 2001: 392–404.
  39. Sawada M, Kondo N, Suzumura A, et al. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989; 491(2): 394–397.
  40. Jones LL, Kreutzberg GW, Raivich G. Transforming growth factor beta's 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res. 1998; 795(1-2): 301–306.
  41. Chen YG, Massagué J, Massagué J, et al. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990; 6(6): 597–641.
  42. Häcker G. The morphology of apoptosis. Cell and Tissue Research. 2000; 301(1): 5–17.
  43. Fawcett J, Rosser A, Dunnett S. Death and survival in the nervous system. Brain Damage, Brain Repair. 2002: 3–14.
  44. Xiao F. Bench to bedside: brain edema and cerebral resuscitation: the present and future. Acad Emerg Med. 2002; 9(9): 933–946.
  45. Graham DI, McIntosh TK, Maxwell WL, et al. Recent advances in neurotrauma. J Neuropathol Exp Neurol. 2000; 59(8): 641–651.
  46. Nordström CH. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept". Neurocrit Care. 2005; 2(1): 83–95.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

VM Media sp. z o.o. VM Group sp.k., Grupa Via Medica, Świętokrzyska 73 St., 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl