open access

Vol 49, No 2 (2017)
Review articles
Published online: 2017-05-17
Submitted: 2017-03-06
Accepted: 2017-05-01
Get Citation

Abdominal pressure and gastrointestinal function: an inseparable couple?

Annika Reintam Blaser, Manu L.N.G. Malbrain, Adrian Regli
DOI: 10.5603/AIT.a2017.0026
·
Pubmed: 28513822
·
Anaesthesiol Intensive Ther 2017;49(2):146-158.

open access

Vol 49, No 2 (2017)
Review articles
Published online: 2017-05-17
Submitted: 2017-03-06
Accepted: 2017-05-01

Abstract

Evaluating the degree of organ dysfunction is a cornerstone in distinguishing patients with critical illness from those without. However, evaluation of the gastrointestinal function in critically ill patients is not unified, and is still largely based on subjective clinical evaluation. Although intra-abdominal pressure has been proposed as a parameter to facilitate monitoring of abdominal compartment in critical illness, the interactions between intra-abdominal pressure and gastrointestinal function are poorly clarified. The aim of this current review is to describe interactions and associations between gastrointestinal dysfunction and intra-abdominal pressure from a pathophysiological and clinical point of view.

Abstract

Evaluating the degree of organ dysfunction is a cornerstone in distinguishing patients with critical illness from those without. However, evaluation of the gastrointestinal function in critically ill patients is not unified, and is still largely based on subjective clinical evaluation. Although intra-abdominal pressure has been proposed as a parameter to facilitate monitoring of abdominal compartment in critical illness, the interactions between intra-abdominal pressure and gastrointestinal function are poorly clarified. The aim of this current review is to describe interactions and associations between gastrointestinal dysfunction and intra-abdominal pressure from a pathophysiological and clinical point of view.

Get Citation

Keywords

intra-abdominal hypertension, gastrointestinal function; gastrointestinal failure, acute gastrointestinal injury; critical illness; microbiome

About this article
Title

Abdominal pressure and gastrointestinal function: an inseparable couple?

Journal

Anaesthesiology Intensive Therapy

Issue

Vol 49, No 2 (2017)

Pages

146-158

Published online

2017-05-17

DOI

10.5603/AIT.a2017.0026

Pubmed

28513822

Bibliographic record

Anaesthesiol Intensive Ther 2017;49(2):146-158.

Keywords

intra-abdominal hypertension
gastrointestinal function
gastrointestinal failure
acute gastrointestinal injury
critical illness
microbiome

Authors

Annika Reintam Blaser
Manu L.N.G. Malbrain
Adrian Regli

References (122)
  1. Singer M, Deutschman CS, Seymour CW, et al. Sepsis Definitions Task Force. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 762–774.
  2. Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016; 20(1): 299.
  3. Ranieri VM, Rubenfeld GD, Thompson BT, et al. ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012; 307(23): 2526–2533.
  4. Reintam A, Parm P, Kitus R, et al. Gastrointestinal failure score in critically ill patients: a prospective observational study. Crit Care. 2008; 12(4): R90.
  5. Reintam Blaser A, Poeze M, Malbrain ML, et al. Gastro-Intestinal Failure Trial Group. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicentre study. Intensive Care Med. 2013; 39(5): 899–909.
  6. Puleo F, Arvanitakis M, Van Gossum A, et al. Gut failure in the ICU. Semin Respir Crit Care Med. 2011; 32(5): 626–638.
  7. Reintam Blaser A, Malbrain ML, Starkopf J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med. 2012; 38(3): 384–394.
  8. Reintam Blaser A, Jakob SM, Starkopf J. Gastrointestinal failure in the ICU. Curr Opin Crit Care. 2016; 22(2): 128–141.
  9. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Pediatric Guidelines Sub-Committee for the World Society of the Abdominal Compartment Syndrome. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013; 39(7): 1190–1206.
  10. Malbrain ML, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005; 33(2): 315–322.
  11. Malbrain ML, Chiumello D, Cesana BM, et al. WAKE-Up! Investigators. A systematic review and individual patient data meta-analysis on intra-abdominal hypertension in critically ill patients: the wake-up project. World initiative on Abdominal Hypertension Epidemiology, a Unifying Project (WAKE-Up!). Minerva Anestesiol. 2014; 80(3): 293–306.
  12. Reintam Blaser A, Parm P, Kitus R, et al. Risk factors for intra-abdominal hypertension in mechanically ventilated patients. Acta Anaesthesiol Scand. 2011; 55(5): 607–614.
  13. Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014; 49(6): 681–689.
  14. Reintam Blaser A, Deane A. Normal physiology of the gastrointestinal system. In: In: Webb A, Angus D, Finfer S, Gattinoni L, Singer M (ed.). Oxford Textbook of Critical Care. 2nd ed. Oxford University Press 2016: 811–814.
  15. Speckmann EJ, Hescheler J, Köhling R. Köhling R. Physiologie 5th ed Munich Elsevier .
  16. Boron WF, Boulpaep EL. Boulpaep EL. Medical Physiology 2nd ed Philadelphia. : Saunders.
  17. Figueiredo L, Silva E, Jr RC, et al. Gas tonometry for evaluation of gastrointestinal mucosal perfusion: experimental models of trauma, shock and complex surgical maneuvers - Part 1. Acta Cirurgica Brasileira. 2002; 17(4): 211–219.
  18. Nguyen TAn, Abdelhamid YA, Phillips LK, et al. Nutrient stimulation of mesenteric blood flow - implications for older critically ill patients. World J Crit Care Med. 2017; 6(1): 28–36.
  19. Holodinsky JK, Roberts DJ, Ball CG, et al. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit Care. 2013; 17(5): R249.
  20. Kim InB, Prowle J, Baldwin I, et al. Incidence, risk factors and outcome associations of intra-abdominal hypertension in critically ill patients. Anaesth Intensive Care. 2012; 40(1): 79–89.
  21. Sawchuck DJ, Wittmann BK. Pre-eclampsia renamed and reframed: Intra-abdominal hypertension in pregnancy. Med Hypotheses. 2014; 83(5): 619–632.
  22. Malbrain ML, Chiumello D, Pelosi P, et al. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med. 2004; 30(5): 822–829.
  23. Reintam A, Parm P, Kitus R, et al. Primary and secondary intra-abdominal hypertension--different impact on ICU outcome. Intensive Care Med. 2008; 34(9): 1624–1631.
  24. Dalfino L, Tullo L, Donadio I, et al. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 2008; 34(4): 707–713.
  25. Maddison L, Starkopf J, Reintam Blaser A. Mild to moderate intra-abdominal hypertension: Does it matter? World J Crit Care Med. 2016; 5(1): 96–102.
  26. Blaser AR, Björck M, De Keulenaer B, et al. Abdominal compliance: A bench-to-bedside review. J Trauma Acute Care Surg. 2015; 78(5): 1044–1053.
  27. Malbrain ML, Peeters Y, Wise R. The neglected role of abdominal compliance in organ-organ interactions. Crit Care. 2016; 20: 67.
  28. Malbrain ML, De Laet I, De Waele JJ, et al. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 2: measurement techniques and management recommendations. Anaesthesiol Intensive Ther. 2014; 46(5): 406–432.
  29. Malbrain ML, Roberts DJ, De Laet I, et al. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 1: definitions and pathophysiology. Anaesthesiol Intensive Ther. 2014; 46(5): 392–405.
  30. Malbrain ML, Roberts DJ, Sugrue M, et al. The polycompartment syndrome: a concise state-of-the-art review. Anaesthesiol Intensive Ther. 2014; 46(5): 433–450.
  31. Balogh Z, De Waele JJ, Malbrain ML, et al. Continuous intra-abdominal pressure monitoring. Acta Clin Belg. 2007; 62 Suppl 1: 26–32.
  32. Wauters J, Spincemaille L, Dieudonne AS, et al. A Novel Method (CiMON) for Continuous Intra-Abdominal Pressure Monitoring: Pilot Test in a Pig Model. Crit Care Res Pract. 2012; 2012: 181563.
  33. Kitano Y, Takata M, Sasaki N, et al. Influence of increased abdominal pressure on steady-state cardiac performance. J Appl Physiol (1985). 1999; 86(5): 1651–1656.
  34. Sharma KC, Brandstetter RD, Brensilver JM, et al. Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery. Chest. 1996; 110(3): 810–815.
  35. Vivier E, Metton O, Piriou V, et al. Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth. 2006; 96(6): 701–707.
  36. Regli A, Hockings LE, Musk GC, et al. Commonly applied positive end-expiratory pressures do not prevent functional residual capacity decline in the setting of intra-abdominal hypertension: a pig model. Crit Care. 2010; 14(4): R128.
  37. Wauters J, Claus P, Brosens N, et al. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure. J Trauma. 2009; 66(3): 713–719.
  38. Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol (1985). 1990; 69(6): 1961–1972.
  39. Malbrain ML, De Waele JJ, De Keulenaer BL. What every ICU clinician needs to know about the cardiovascular effects caused by abdominal hypertension. Anaesthesiol Intensive Ther. 2015; 47(4): 388–399.
  40. Wauters J, Claus P, Brosens N, et al. Relationship between Abdominal Pressure, Pulmonary Compliance, and Cardiac Preload in a Porcine Model. Crit Care Res Pract. 2012; 2012: 763181.
  41. Harman PK, Kron IL, McLachlan HD, et al. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982; 196(5): 594–597.
  42. Bloomfield GL, Blocher CR, Fakhry IF, et al. Elevated intra-abdominal pressure increases plasma renin activity and aldosterone levels. J Trauma. 1997; 42(6): 997–1004; discussion 1004.
  43. Gudmundsson FF, Gislason HG, Myking OL, et al. Hormonal changes related to reduced renal blood flow and low urine output under prolonged increased intra-abdominal pressure in pigs. Eur J Surg. 2002; 168(3): 178–186.
  44. Myre K, Rostrup M, Eriksen M, et al. Increased spillover of norepinephrine to the portal vein during CO-pneumoperitoneum in pigs. Acta Anaesthesiol Scand. 2004; 48(4): 443–450.
  45. Andersson LE, Jogestrand T, Thörne A, et al. Are there changes in leg vascular resistance during laparoscopic cholecystectomy with CO2 pneumoperitoneum? Acta Anaesthesiol Scand. 2005; 49(3): 360–365.
  46. Gudmundsson FF, Gislason HG, Dicko A, et al. Effects of prolonged increased intra-abdominal pressure on gastrointestinal blood flow in pigs. Surg Endosc. 2001; 15(8): 854–860.
  47. Regli A, De Keulenaer BL, Hockings LE, et al. The role of femoral venous pressure and femoral venous oxygen saturation in the setting of intra-abdominal hypertension: a pig model. Shock. 2011; 35(4): 422–427.
  48. De Keulenaer BL, Regli A, Dabrowski W, et al. Does femoral venous pressure measurement correlate well with intrabladder pressure measurement? A multicenter observational trial. Intensive Care Med. 2011; 37(10): 1620–1627.
  49. Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013; 62(6): 485–495.
  50. Diebel LN, Dulchavsky SA, Wilson RF. Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma. 1992; 33(1): 45–8; discussion 48.
  51. Diebel LN, Wilson RF, Dulchavsky SA, et al. Effect of increased intra-abdominal pressure on hepatic arterial, portal venous, and hepatic microcirculatory blood flow. J Trauma. 1992; 33(2): 279–82; discussion 282.
  52. Varela JE, Cohn SM, Giannotti GD, et al. Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery. 2001; 129(3): 363–370.
  53. Klopfenstein CE, Morel DR, Clergue F, et al. Effects of abdominal CO2 insufflation and changes of position on hepatic blood flow in anesthetized pigs. Am J Physiol. 1998; 275(3 Pt 2): H900–H905.
  54. Ferrara G, Kanoore Edul VS, Caminos Eguillor JF, et al. Effects of norepinephrine on tissue perfusion in a sheep model of intra-abdominal hypertension. Intensive Care Med Exp. 2015; 3(1): 46.
  55. Shah SK, Uray KS, Stewart RH, et al. Resuscitation-induced intestinal edema and related dysfunction: state of the science. J Surg Res. 2011; 166(1): 120–130.
  56. Unthank JL, Bohlen HG. Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am J Physiol. 1988; 254(3 Pt 1): G389–G398.
  57. Lattuada M, Hedenstierna G. Abdominal lymph flow in an endotoxin sepsis model: influence of spontaneous breathing and mechanical ventilation. Crit Care Med. 2006; 34(11): 2792–2798.
  58. Malbrain ML, Pelosi P, De laet I, et al. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery…. Acta Clin Belg. 2007; 62 Suppl 1: 152–161.
  59. Jansen RW, Lipsitz LA. Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med. 1995; 122(4): 286–295.
  60. Debaveye Y, Bertieaux S, Malbrain ML. Simultaneous measurement of intra-abdominal pressure and regional CO2 via a gastric tonometer. Intensive Care Med. 2000; 26(Suppl 3): S324.
  61. Malbrain M, laet IDe, Luis L, et al. Validation of continuous intragastric pressure measurement and correlation with intramucosal pH in a pig model. Critical Care. 2011; 15(Suppl 1): P79.
  62. Malbrain ML, Viaene D, Kortgen A, et al. Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension. Ann Intensive Care. 2012; 2 Suppl 1: S19.
  63. Diebel LN, Dulchavsky SA, Brown WJ. Splanchnic ischemia and bacterial translocation in the abdominal compartment syndrome. J Trauma. 1997; 43(5): 852–855.
  64. Olofsson PH, Berg S, Ahn HC, et al. Gastrointestinal microcirculation and cardiopulmonary function during experimentally increased intra-abdominal pressure. Crit Care Med. 2009; 37(1): 230–239.
  65. Leng Y, Zhang K, Fan J, et al. Effect of acute, slightly increased intra-abdominal pressure on intestinal permeability and oxidative stress in a rat model. PLoS One. 2014; 9(10): e109350.
  66. Cheng J, Wei Z, Liu X, et al. The role of intestinal mucosa injury induced by intra-abdominal hypertension in the development of abdominal compartment syndrome and multiple organ dysfunction syndrome. Crit Care. 2013; 17(6): R283.
  67. Correa-Martín L, Párraga E, Sánchez-Margallo FM, et al. Mechanical Intestinal Obstruction in a Porcine Model: Effects of Intra-Abdominal Hypertension. A Preliminary Study. PLoS One. 2016; 11(2): e0148058.
  68. Schwarte LA, Scheeren TWL, Lorenz C, et al. Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology. 2004; 100(5): 1081–1087.
  69. Dubin A, Edul VS, Pozo MO, et al. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med. 2008; 36(2): 535–542.
  70. Benninger E, Laschke MW, Cardell M, et al. Early detection of subclinical organ dysfunction by microdialysis of the rectus abdominis muscle in a porcine model of critical intra-abdominal hypertension. Shock. 2012; 38(4): 420–428.
  71. Meier C, Contaldo C, Schramm R, et al. Microdialysis of the rectus abdominis muscle for early detection of impending abdominal compartment syndrome. Intensive Care Med. 2007; 33(8): 1434–1443.
  72. Regli A, De Keulenaer B, De Laet I, et al. Fluid therapy and perfusional considerations during resuscitation in critically ill patients with intra-abdominal hypertension. Anaesthesiol Intensive Ther. 2015; 47(1): 45–53.
  73. Woolsey CA, Coopersmith CM. Vasoactive drugs and the gut: is there anything new? Curr Opin Crit Care. 2006; 12(2): 155–159.
  74. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017; 45(3): 486–552.
  75. Cheatham ML, Malbrain ML, Kirkpatrick A, et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. Recommendations. Intensive Care Med. 2007; 33(6): 951–962.
  76. Zhang H, Smail N, Cabral A, et al. Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock. Am J Respir Crit Care Med. 1997; 155(6): 1965–1971.
  77. Guzman JA, Rosado AE, Kruse JA. Vasopressin vs norepinephrine in endotoxic shock: systemic, renal, and splanchnic hemodynamic and oxygen transport effects. J Appl Physiol (1985). 2003; 95(2): 803–809.
  78. Peng ZY, Critchley LAH, Fok BSP. The effects of increasing doses of noradrenaline on systemic and renal circulations in acute bacteraemic dogs. Intensive Care Med. 2005; 31(11): 1558–1563.
  79. Bellomo R, Kellum JA, Wisniewski SR, et al. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med. 1999; 159(4 Pt 1): 1186–1192.
  80. Di Giantomasso D, Morimatsu H, Bellomo R, et al. Norepinephrine and vital organ blood flow. Intensive Care Med. 2002; 28(12): 1804–1809.
  81. Agustí M, Elizalde JI, Adàlia R, et al. Dobutamine restores intestinal mucosal blood flow in a porcine model of intra-abdominal hyperpressure. Crit Care Med. 2000; 28(2): 467–472.
  82. Peng ZY, Critchley LA, Joynt GM, et al. Effects of norepinephrine during intra-abdominal hypertension on renal blood flow in bacteremic dogs. Crit Care Med. 2008; 36(3): 834–841.
  83. De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003; 31(6): 1659–1667.
  84. Caldwell CB, Ricotta JJ. Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res. 1987; 43(1): 14–20.
  85. Mehta S, Granton J, Gordon AC, et al. Vasopressin and Septic Shock Trial (VASST) Investigators, VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008; 358(9): 877–887.
  86. Gordon AC, Russell JA, Walley KR, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010; 36(1): 83–91.
  87. Klinzing S, Simon M, Reinhart K, et al. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med. 2003; 31(11): 2646–2650.
  88. van Haren FMP, Rozendaal FW, van der Hoeven JG. The effect of vasopressin on gastric perfusion in catecholamine-dependent patients in septic shock. Chest. 2003; 124(6): 2256–2260.
  89. Eleftheriadis E, Kotzampassi K, Papanotas K, et al. Gut ischemia, oxidative stress, and bacterial translocation in elevated abdominal pressure in rats. World J Surg. 1996; 20(1): 11–16.
  90. Gong G, Wang P, Ding W, et al. The role of oxygen-free radical in the apoptosis of enterocytes and bacterial translocation in abdominal compartment syndrome. Free Radic Res. 2009; 43(5): 470–477.
  91. Simon RJ, Friedlander MH, Ivatury RR, et al. Hemorrhage lowers the threshold for intra-abdominal hypertension-induced pulmonary dysfunction. J Trauma. 1997; 42(3): 398–403; discussion 404.
  92. Schachtrupp A, Graf J, Tons C, et al. Intravascular volume depletion in a 24-hour porcine model of intra-abdominal hypertension. J Trauma. 2003; 55(4): 734–740.
  93. Alverdy JC, Krezalek MA. Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis. Crit Care Med. 2017; 45(2): 337–347.
  94. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011; 140(6): 1756–1767.
  95. László I, Trásy D, Molnár Z, et al. Sepsis: From Pathophysiology to Individualized Patient Care. J Immunol Res. 2015; 2015: 510436.
  96. Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016; 164(3): 337–340.
  97. Lankelma JM, van Vught LA, Belzer C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med. 2017; 43(1): 59–68.
  98. Morrow LE, Wischmeyer P. Blurred Lines: Dysbiosis and Probiotics in the ICU. Chest. 2017; 151(2): 492–499.
  99. Vincent JL, Rello J, Marshall J, et al. EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302(21): 2323–2329.
  100. Prescott HC, Dickson RP, Rogers MAM, et al. Hospitalization Type and Subsequent Severe Sepsis. Am J Respir Crit Care Med. 2015; 192(5): 581–588.
  101. Leng Y, Yi M, Fan J, et al. Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats. Sci Rep. 2016; 6: 22814.
  102. Li Q, Wang C, Tang C, et al. Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation: a case report. Crit Care. 2015; 19: 37.
  103. Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and 'dysbiosis therapy' in critical illness. Curr Opin Crit Care. 2016; 22(4): 347–353.
  104. Laval L, Martin R, Natividad JN, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015; 6(1): 1–9.
  105. Clarcson B, Thompson D, Horwith M, et al. Cyclical edema and shock due to increased capillary permeability. Trans Assoc Am Physicians. 1960; 73: 272–282.
  106. Fishbein MC, State D, Hirose F, et al. Capillary leak syndrome with massive intestinal edema after appendectomy. Am J Surg. 1974; 127(6): 740–744.
  107. Duchesne JC, Kaplan LJ, Balogh ZJ, et al. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther. 2015; 47(2): 143–155.
  108. Ergin B, Zafrani L, Kandil A, et al. Fully Balanced Fluids do not Improve Microvascular Oxygenation, Acidosis and Renal Function in a Rat Model of Endotoxemia. Shock. 2016; 46(1): 83–91.
  109. Balogh Z, McKinley BA, Cocanour CS, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003; 138(6): 637–42; discussion 642.
  110. Attuwaybi B, Kozar RA, Gates KS, et al. Hypertonic saline prevents inflammation, injury, and impaired intestinal transit after gut ischemia/reperfusion by inducing heme oxygenase 1 enzyme. J Trauma. 2004; 56(4): 749–58; discussion 758.
  111. Cotton BA, Guy JS, Morris JA, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006; 26(2): 115–121.
  112. Nessim C, Sidéris L, Turcotte S, et al. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res. 2013; 183(2): 567–573.
  113. Uray KS, Laine GA, Xue H, et al. Intestinal edema decreases intestinal contractile activity via decreased myosin light chain phosphorylation. Crit Care Med. 2006; 34(10): 2630–2637.
  114. Bejarano N, Navarro S, Rebasa P, et al. Intra-abdominal pressure as a prognostic factor for tolerance of enteral nutrition in critical patients. JPEN J Parenter Enteral Nutr. 2013; 37(3): 352–360.
  115. Noordally SO, Sohawon S, Semlali H, et al. Is there a correlation between circulating levels of citrulline and intestinal dysfunction in the critically ill? Nutr Clin Pract. 2012; 27(4): 527–532.
  116. Piton G, Belon F, Cypriani B, et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med. 2013; 41(9): 2169–2176.
  117. Schellekens DH, Grootjans J, Dello SA, et al. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J Clin Gastroenterol. 2014; 48(3): 253–260.
  118. de Haan JJ, Lubbers T, Derikx JP, et al. Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study. Crit Care. 2009; 13(3): R86.
  119. Voth M, Holzberger S, Auner B, et al. I-FABP and L-FABP are early markers for abdominal injury with limited prognostic value for secondary organ failures in the post-traumatic course. Clin Chem Lab Med. 2015; 53(5): 771–780.
  120. Lobo SM, Orrico SRP, Queiroz MM, et al. Comparison of the effects of lactated Ringer solution with and without hydroxyethyl starch fluid resuscitation on gut edema during severe splanchnic ischemia. Braz J Med Biol Res. 2008; 41(7): 634–639.
  121. Myburgh JA, Finfer S, Bellomo R, et al. CHEST Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012; 367(20): 1901–1911.
  122. Perner A, Haase N, Guttormsen AB, et al. 6S Trial Group, Scandinavian Critical Care Trials Group. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012; 367(2): 124–134.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

VM Media sp. z o.o. VM Group sp.k., Grupa Via Medica, Świętokrzyska 73 St., 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl