open access

Vol 48, No 1 (2016)
Review articles
Submitted: 2016-03-11
Accepted: 2016-03-11
Get Citation

Tissue oximetry in anaesthesia and intensive care

Aleksandra Biedrzycka, Romuald Lango
DOI: 10.5603/AIT.2016.0005
·
Anaesthesiol Intensive Ther 2016;48(1):41-48.

open access

Vol 48, No 1 (2016)
Review articles
Submitted: 2016-03-11
Accepted: 2016-03-11

Abstract

Conventional monitoring during surgery and intensive care is not sufficiently sensitive to detect acute changes in vital organs perfusion, while its good quality is critical for maintaining their function. Disturbed vital organ perfusion may lead to the development of postoperative complications, including neurological sequel and renal failure. Near-infra-red spectroscopy (NIRS) represents one of up-to-date techniques of patient monitoring which is commonly used for the assessment of brain oximetry in thoracic aorta surgery, and – increasingly more often -in open-heart surgery. Algorithms for maintaining adequate brain saturation may result in a decrease of neurological complications and cognitive dysfunction following cardiac surgery. The assessment of kidney and visceral perfusion with tissue oximetry is gaining increasing interest during pediatric cardiac surgery. Attempts at decreasing complications by the use of brain oximetry during carotid endarterectomy, as well as thoracic and abdominal surgery demonstrated conflicting results. In recent years NIRS technique was proposed as a tool for muscle perfusion assessment under short term ischemia and reperfusion, referred to as vascular occlusion test (VOT). This monitoring extension allows for the identification of early disturbances in tissue perfusion. Results of recent studies utilizing VOT suggest that the muscle saturation decrease rate is reduced in septic shock patients, while decreased speed of saturation recovery on reperfusion is related to disturbed microcirculation. Being non-invasive and feasible technique, NIRS offers an improvement of preoperative risk assessment in cardiac surgery and promises more comprehensive intraoperative and ICU patient monitoring allowing for better outcome.

Abstract

Conventional monitoring during surgery and intensive care is not sufficiently sensitive to detect acute changes in vital organs perfusion, while its good quality is critical for maintaining their function. Disturbed vital organ perfusion may lead to the development of postoperative complications, including neurological sequel and renal failure. Near-infra-red spectroscopy (NIRS) represents one of up-to-date techniques of patient monitoring which is commonly used for the assessment of brain oximetry in thoracic aorta surgery, and – increasingly more often -in open-heart surgery. Algorithms for maintaining adequate brain saturation may result in a decrease of neurological complications and cognitive dysfunction following cardiac surgery. The assessment of kidney and visceral perfusion with tissue oximetry is gaining increasing interest during pediatric cardiac surgery. Attempts at decreasing complications by the use of brain oximetry during carotid endarterectomy, as well as thoracic and abdominal surgery demonstrated conflicting results. In recent years NIRS technique was proposed as a tool for muscle perfusion assessment under short term ischemia and reperfusion, referred to as vascular occlusion test (VOT). This monitoring extension allows for the identification of early disturbances in tissue perfusion. Results of recent studies utilizing VOT suggest that the muscle saturation decrease rate is reduced in septic shock patients, while decreased speed of saturation recovery on reperfusion is related to disturbed microcirculation. Being non-invasive and feasible technique, NIRS offers an improvement of preoperative risk assessment in cardiac surgery and promises more comprehensive intraoperative and ICU patient monitoring allowing for better outcome.

Get Citation

Keywords

tissue oximetry, brain saturation, stroke

About this article
Title

Tissue oximetry in anaesthesia and intensive care

Journal

Anaesthesiology Intensive Therapy

Issue

Vol 48, No 1 (2016)

Pages

41-48

DOI

10.5603/AIT.2016.0005

Bibliographic record

Anaesthesiol Intensive Ther 2016;48(1):41-48.

Keywords

tissue oximetry
brain saturation
stroke

Authors

Aleksandra Biedrzycka
Romuald Lango

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

VM Media sp. z o.o. VM Group sp.k., Grupa Via Medica, Świętokrzyska 73 St., 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl