open access

Vol 47, No 4 (2015)
Review articles
Published online: 2015-05-13
Submitted: 2015-04-06
Accepted: 2015-05-01
Get Citation

What every ICU clinician needs to know about the cardiovascular effects caused by abdominal hypertension

Manu L.N.G. Malbrain, Jan J. De Waele, Bart L. De Keulenaer
DOI: 10.5603/AIT.a2015.0028
·
Anaesthesiol Intensive Ther 2015;47(4):388-399.

open access

Vol 47, No 4 (2015)
Review articles
Published online: 2015-05-13
Submitted: 2015-04-06
Accepted: 2015-05-01

Abstract

The effects of increased intra-abdominal pressure (IAP) on cardiovascular function are well recognized and include a combined negative effect on preload, afterload and contractility. The aim of this review is to summarize the current knowledge on this topic. The presence of intra-abdominal hypertension (IAH) erroneously increases barometric filling pressures like central venous (CVP) and pulmonary artery occlusion pressure (PAOP) (since these are zeroed against atmospheric pressure). Transmural filling pressures (calculated by subtracting the pleural pressure from the end-expiratory CVP value) may better reflect the true preload status but are difficult to obtain at the bedside. Alternatively, since pleural pressures are seldom measured, transmural CVP can also be estimated by subtracting half of the IAP from the end-expiratory CVP value, since abdominothoracic transmission is on average 50%. Volumetric preload indicators, such as global and right ventricular end-diastolic volumes or the left ventricular end-diastolic area, also correlate better with true preload. When using functional hemodynamic monitoring parameters like stroke volume variation (SVV) or pulse pressure variation (PPV) one must bear in mind that increased IAP will increase these values (via a concomitant increase in intrathoracic pressure). The passive leg raising test may be a false negative in IAH. Calculation of the abdominal perfusion pressure (as mean arterial pressure minus IAP) has been shown to be a better resuscitation endpoint than IAP alone. Finally, it is re-assuring that transpulmonary thermodilution techniques have been validated in the setting of IAH and abdominal compartment syndrome. In conclusion, the clinician must be aware of the different effects of IAH on cardiovascular function in order to assess the volume status accurately and to optimize hemodynamic performance.

Abstract

The effects of increased intra-abdominal pressure (IAP) on cardiovascular function are well recognized and include a combined negative effect on preload, afterload and contractility. The aim of this review is to summarize the current knowledge on this topic. The presence of intra-abdominal hypertension (IAH) erroneously increases barometric filling pressures like central venous (CVP) and pulmonary artery occlusion pressure (PAOP) (since these are zeroed against atmospheric pressure). Transmural filling pressures (calculated by subtracting the pleural pressure from the end-expiratory CVP value) may better reflect the true preload status but are difficult to obtain at the bedside. Alternatively, since pleural pressures are seldom measured, transmural CVP can also be estimated by subtracting half of the IAP from the end-expiratory CVP value, since abdominothoracic transmission is on average 50%. Volumetric preload indicators, such as global and right ventricular end-diastolic volumes or the left ventricular end-diastolic area, also correlate better with true preload. When using functional hemodynamic monitoring parameters like stroke volume variation (SVV) or pulse pressure variation (PPV) one must bear in mind that increased IAP will increase these values (via a concomitant increase in intrathoracic pressure). The passive leg raising test may be a false negative in IAH. Calculation of the abdominal perfusion pressure (as mean arterial pressure minus IAP) has been shown to be a better resuscitation endpoint than IAP alone. Finally, it is re-assuring that transpulmonary thermodilution techniques have been validated in the setting of IAH and abdominal compartment syndrome. In conclusion, the clinician must be aware of the different effects of IAH on cardiovascular function in order to assess the volume status accurately and to optimize hemodynamic performance.

Get Citation

Keywords

abdominal hypertension, abdominal pressure, abdominal compartment syndrome, cardiovascular, hemodynamic, barometric, volumetric, preload, afterload, contractility, cardiac output, functional hemodynamic, fluid responsiveness, passive leg raising

About this article
Title

What every ICU clinician needs to know about the cardiovascular effects caused by abdominal hypertension

Journal

Anaesthesiology Intensive Therapy

Issue

Vol 47, No 4 (2015)

Pages

388-399

Published online

2015-05-13

DOI

10.5603/AIT.a2015.0028

Bibliographic record

Anaesthesiol Intensive Ther 2015;47(4):388-399.

Keywords

abdominal hypertension
abdominal pressure
abdominal compartment syndrome
cardiovascular
hemodynamic
barometric
volumetric
preload
afterload
contractility
cardiac output
functional hemodynamic
fluid responsiveness
passive leg raising

Authors

Manu L.N.G. Malbrain
Jan J. De Waele
Bart L. De Keulenaer

Important: This website uses cookies.tanya dokter More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

VM Media sp. z o.o. VM Group sp.k., Grupa Via Medica, Świętokrzyska 73 St., 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl