Ventilator-associated pneumonia monitoring according to the INICC project at one centre

Wiesława Duszyńska¹, Victor D. Rosenthal², Barbara Dragan¹, Paulina Węgrzyń³, Anna Mazur³, Patrycja Wojtyra³, Agnieszka Tomala³, Andrzej Kübler¹

¹Chair and Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Poland
²International Nosocomial Infection Control Consortium, Buenos Aires, Argentina
³Students’ Scientific Society, Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Poland

Abstract

Background: Pneumonia is a common complication of hospitalisation in severely ill patients who need mechanical ventilation. The aim of this study was to assess the usefulness of the International Nosocomial Infection Control Consortium programme for the surveillance of ventilator-associated pneumonia (VAP).

Methods: A prospective study (1 Jan 2012−30 June 2014) was conducted in the 20-bed ICU. The device utilisation ratios for lung ventilation and the frequency (density and incidence) and aetiology of VAP were estimated in ICU patients.

Results: From a total of 1097 patients, VAP infections were diagnosed in 93. Thirty percent of patients with VAP died. The incidence index was 8.47 per 100 admissions to the ICU. VAP infections accounted for 46% of the overall count of device-associated healthcare-associated infections. Mechanical ventilation was used in 71 ± 8 patients during the 11 862 patient days and 8425 ventilation days. The rate of VAP per 1000 ventilator days was 11.15/9.34/10.23 in years 2012/2013/2014 (half a year), respectively. The main VAP pathogens were Acinetobacter baumannii (45%) and Pseudomonas aeruginosa (17%).

Conclusion: During the reported time span, the incidence of VAP was lower than in the INICC report (2007−2012), but it was tenfold higher than in the NHSN/CDC report (dated 2012). Because of the unchanged VAP level during the 2.5-year observation period, the root cause needs to be determined and action should be taken to resolve this issue.

Key words: hospital infections, ventilator-associated pneumonia

Ventilator-associated pneumonia (VAP) is recognised in patients who are mechanically ventilated (for at least 48 h) using artificial airways (an endotracheal or tracheostomy tube) [1]. According to the binding definitions, the presence of the endotracheal/tracheostomy tube alone does not allow the physician to diagnose VAP. The most common cause of VAP is thought to be aspiration of microorganisms from the oral cavity [2]. In the empiric therapy of VAP, it is essential to characterise VAP according to the onset of the first symptoms into an early form (up to 5 days from endotracheal intubation, which is usually caused by commensal microorganisms of patients) or a late form (5 days after endotracheal intubation, which is most frequently caused by multi-drug resistant Gram-negative bacteria that are characteristic of a particular intensive care unit).

Pneumonia occurs in 7−20% of mechanically ventilated patients [2, 3]. The incidence of VAP compared with the total number of hospitalised patients is highly varied [2, 3]. According to the findings of American studies, the incidence reaches 2.5−22.8% [4, 5], whereas in a European study involving a smaller population, VAP was recognised in 9.3% of patients (from a total of 9080 hospitalised patients). According to the risk factors, the density of this nosocomial infection in the American ICUs ranges from 1.27 to 8.5/1000 days of mechanical ventilation [4, 7]. The density of VAP in Polish hospitals is estimated at 15.5−16.7 per 1000 days of mechan-
ical ventilation [8, 9]. According to a large study including 1735 patients treated in 27 European ICUs, the rate of VAP in various age groups were 13.7, 16.6 and 13/1000 ventilators days in patients aged 45–64, 65–74 and older than 75 years, respectively [10]. The mortality among VAP patients is 70% or is controversially low (1–1.5%) when estimated after the error correction resulting from the impact of concomitant diseases [11, 12]. A study performed in 88 689 individuals revealed that VAP caused statistically significant prolongation of mechanical ventilation (21.8 vs. 10.3 days, \(P < 0.0001\)), ICU therapy (20.5 vs. 11.6 days, \(P < 0.0001\)) and hospital treatment (32.6 vs. 19.5 days, \(P < 0.0001\)) [4]. The cost of therapy increased by about 40 000 USD for one patient with the diagnosis of VAP (American data), which is equally substantial [4, 6].

The best-known recommendations for reducing the incidence of respiratory infections were named the Institute for Healthcare Improvement (IHI) Ventilator Bundle. The recommendations include the following interventions: the use of the sedation protocol with everyday awakening, daily assessment of possible awakening or extubation, elevation of a bed head at the angle of 30–45°, application of chlorhexidine for oral care, use of proton pump inhibitors for preventing gastric ulcer, subglottic aspiration in those ventilated for more than 48 h, and prophylaxis of deep vein thrombosis [13, 14]. The introduction of preventive recommendations and monitoring of respiratory tract infections associated with mechanical ventilation is an element of surveillance in patients undergoing mechanical ventilation. These approaches decrease infection incidence, shorten hospitalisations, reduce treatment costs and improve patient safety [15, 16].

The aims of the present study were to estimate the incidence and to determine the aetiologic factors of ventilator–associated pneumonia in patients treated in one ICU during a 30-month observation period. Moreover, the trend of VAP incidence was analysed and compared with the results of the most important international reports, i.e., the Center for Disease Control and Prevention/National Healthcare Safety Network (CDC/NHSN) and International Nosocomial Infection Control Consortium (INICC) [17, 18] and with our previous publications.

METHODS

The study was observational and prospective and was performed between 1.01.2012–30.06.2014 at the 20-bed ICU of the surgical and internal medicine profile. Analysis involved all patients who were hospitalised in the ICU for longer than 48 hours and who required invasive ventilation due to acute or chronic exacerbated respiratory failure. The infection surveillance charts included information on the use of mechanical ventilation or otherwise (to calculate the number of ventilation days) and the number of hospitalised patients (to calculate the number of patient days). The detailed data regarding identification of the patients, clinical data and data on the medical device used, risk factors for infections, diagnostic methods and data on the pneumonia cases diagnosed were also introduced to the monitoring programme of the Device-Associated Healthcare-Associated Infections (DA-HAIs). Moreover, the study presented the following basic elements of VAP monitoring according to the INICC: density of VAP/1000 ventilation days and incidence of VAP/100 ICU admissions, intensity of mechanical ventilation procedures (ventilator utilisation ratio — VU-R) and microbiological profiles of infections.

During VAP monitoring, the following were calculated once a month:

1. device utilisation ratio (DU-R), the ratio determining the percentage of mechanically ventilated patients (ventilator utilisation ratio — VU-R):

\[
VU-R = \frac{\text{number of mechanical ventilation days}}{\text{total number of person-days}} \times 100;
\]

2. rate of VAP (density):

\[
\text{the rate of VAP} = \frac{\text{number of VAP patients}}{\text{total number of ventilator days}} \times 1000;
\]

3. moreover, the incidence of VAP was calculated, i.e., the number of new VAP cases during one year (2010–2013) and six months (2014) per 100 ICU admissions:

\[
\text{the incidence index} = \frac{\text{number of patients with VAP}}{\text{number of patients admitted in a given period}} \times 100.
\]

CLINICAL AND MICROBIOLOGICAL DIAGNOSIS OF VAP

VAP was recognised based on the CDC/NHSN guidelines accepted by the INICC [19, 20]. VAP denoted as PNU1 according to the classic CDC definition, was diagnosed in patients with endotracheal tubes undergoing mechanical ventilation for at least 48 hours, who also had radiologic changes of the lungs, at least one of the clinical symptoms of infection (body temperature > 38°C or < 36°C, leucocytosis \(\geq 12 \text{ G L}^{-1}\) or leucopenia < 4 G L\(^{-1}\)) and at least two of the following criteria: 1) purulent secretion from the bronchial tree; 2) impaired parameters of gas exchange; 3) cough or respiratory disorders; 4) auscultation changes characteristic of pneumonia [19] and microbiological confirmation. Since 2013, the diagnosis of VAP was based on a new definition of probable VAP, which was defined as patients with respiratory tract infections with at least two days of stability of respiratory parameters during ventilator therapy for whom the
respiratory efficiency deteriorated and required increased positive end-expiratory pressure (PEEP) by at least 3 cm H\(_2\)O above the daily minimum and oxygen supply in the respiratory mixture (F\(_{O_2}\)) at least 20% higher than the daily minimum. According to the new definition, impaired respiratory parameters have to be maintained for at least two calendar days [20]. The microbiological diagnosis of VAP in this form of infection considers the quantitative culture of bronchial tree secretion and presence of purulent secretion (> 25 neutrophils and < 10 epithelial cells in the visual field on microscopy). VAP was radiologically diagnosed; however, according to the current definition of probable VAP, radiologic lung changes are not necessary for diagnosis [20]. The bronchial tree secretion was subjected to the recommended microbiological diagnostic procedures for the presence of pathogens. Once VAP was suspected, bronchial secretion was collected using mini-bronchoalveolar lavage (mini-BAL) and diagnosed quantitatively. When the patient required therapeutic bronchofibroscopy during the course of pneumonia, bronchial secretion was collected using bronchoalveolar lavage (BAL) as well as diagnosed quantitatively. In cases of severe sepsis or septic shock, microbiological diagnostics also involved blood. In the selected cases, the diagnostic procedures for atypical pathogens, such as Mycobacterium tuberculosis, chlamydiae, mycoplasms, Legionella spp., cytomegalovirus, and Aspergillus spp., were collected and sent for tests according to the accepted standards. The drug-susceptibility of cultured bacterial or fungal strains were examined according to the accepted standards of microbiological diagnostic procedures, e.g., E-tests in cases of Candida yeast-like fungi using the dilution method in the Vitek 2 system (AST-YS07 chart). The following were accepted as significant for the diagnosing pneumonia: quantitative culture of bacterial or fungal strains collected by mini-BAL or BAL from the bronchial secretion > 10\(^4\) CFU mL\(^{-1}\) [19].

RESULTS

Of 1097 patients treated in the ICU during 11,862 patient days, VAP was recognised in 93 and 30% of them died. The patient characteristics of patients are presented in Table 1. The incidence rate was 8.4/100 patients admitted to the ICU. Ventilator-associated pneumonia accounted for 46% of the total number of device-associated healthcare-associated infections DA-HAIs (n = 209). The total number of mechanical ventilation days in the observation period was 8425. The density of VAP/1000 ventilator days and ventilator utilisation ratio [(median/IQR) and (mean ± SD)] were 10.23 (8.4–13.68)/1000 ventilation days and 71.24 ± 8.1, respectively. The analysis of the VAP ratio density/incidence rates and ventilator utilisation ratios during the observation period as well as the number of ventilation days during the observation period are presented in Table 2.

The analysis of the VAP incidence in individual months of observation is presented in Figure 1. The main pathogens of VAP were Acinetobacter baumannii (45%), Pseudomonas aeruginosa (17%), and Klebsiella pneumoniae (14%). The Acinetobacter baumannii strains showed resistance to carbapenems in 94%/100% and to amikacin in 94%/100% in 2013 and 2014, respectively, as well as 100% susceptibility to colistin. The Pseudomonas aeruginosa strains were found resistant to the following: carbapenems in 43%/0%, amikacin in 43%/0%, ceftazidime in 57%/20%, ciprofloxacin in 57%/40%, and pipercillin with tazobactam in 15%/20%, in 2013 and 2014, respectively. All strains of Klebsiella pneumoniae demonstrated extended-spectrum beta-lactamase (ESBL) resistance and 100% susceptibility to carbapenems and amikacin. The aetiological factors of VAP are listed in Figure 2.

The comparative analysis of the VAP incidence in the ICU in various periods and results of international reports are presented in Table 3.

DISCUSSION

For the proper registration of DA-HAIs, the principles of recognition and diagnosis can be standardised and similar epidemiological terms can be used. With the presented programme of infection control, according to the INICC criteria, strictly defined definitions of pneumonia were applied with consideration for the diagnostic difficulties of VAP in patients treated in the ICU who have respiratory failure of various aetiologies. In our study, the VAP rate/1000 ventilator days was slightly lower compared to the results reported in another study that used similar criteria [23]. The use of various diagnostic methods according to the CDC or American College of Chest Physicians (ACCP) recommendations, even at a comparable number of positive bronchial secretion cultures (88% vs. 92%) contributed to significant differences in the diagnoses of infection incidence — 1.2 vs. 8.5/1000 ventilation days [7]. The application of liberal or more restrictive definitions, considering the deterioration of ventilation parameters, in a study of 8123 patients showed substantial differences in the frequency of infections (26.3 vs. 12.0 vs. 8.4 vs. 0.2/1000 ventilation days) in the same population of patients as well as a significant increase in the hospital mortality in the group diagnosed restrictively (OR 6.1 vs. 1.9) [23]. Patients with diagnosed "possible VAP" and deteriorating respiratory parameters (similar to the definition of probable VAP) as well as purulent bronchial secretions that were only evaluated microscopically [20] were not included in our study.

For diagnosing VAP, the recommended options include quantitative microbiological diagnostic methods of bronchial secretion (used by the authors), both BAL and mini-BAL, and qualitative assessment of tracheal secretions sampled...
Wiesława Duszyńska et al., VAP monitoring

From the endotracheal aspirate (ETA). In one of the studies, the patients diagnosed by BAL had a lower number of confirmed VAP (6.1 vs. 25.5/1000 ventilation days) compared to those diagnosed with non-protective aspiration, which was characterised by 90% sensitivity and only 14% specificity [24].

The literature data indicate that VAP prophylaxis, in the form of the ventilation bundle, can result in notable effects, i.e., decreased incidence [3, 15, 23, 25]; however, studies confirming the lack of infections of this type in a given period are sparse [17, 26]. Moreover, the complete elimination of VAP has been questioned [27]. The first data regarding respiratory tract infections in individuals treated with a ventilator,

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014 (01–06)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hospitalised patients</td>
<td>495</td>
<td>397</td>
<td>205</td>
<td>1097</td>
</tr>
<tr>
<td>Number of patient days</td>
<td>5327</td>
<td>4445</td>
<td>2090</td>
<td>11862</td>
</tr>
<tr>
<td>Females</td>
<td>193 (39%)</td>
<td>151 (38%)</td>
<td>77 (38%)</td>
<td>421 (38%)</td>
</tr>
<tr>
<td>Males</td>
<td>302 (61%)</td>
<td>246 (62%)</td>
<td>128 (62%)</td>
<td>676 (62%)</td>
</tr>
<tr>
<td>Surgical patients</td>
<td>396 (80%)</td>
<td>330 (83%)</td>
<td>125 (61%)</td>
<td>851 (78%)</td>
</tr>
<tr>
<td>Non-surgical patients</td>
<td>99 (20%)</td>
<td>67 (17%)</td>
<td>80 (39%)</td>
<td>246 (22%)</td>
</tr>
<tr>
<td>Patients with severe sepsis or septic shock</td>
<td>183 (37%)</td>
<td>184 (46%)</td>
<td>102 (50%)</td>
<td>469 (43%)</td>
</tr>
</tbody>
</table>

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014 (01–06)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of VAP/1000 ventilator days</td>
<td>11.15 (9.58–13.68)</td>
<td>9.34 (8.4–11.34)</td>
<td>10.22 (9.6–11.69)</td>
<td>10.23 (8.4–13.68)</td>
</tr>
<tr>
<td>Number of ventilation days</td>
<td>3687</td>
<td>3208</td>
<td>1530</td>
<td>8425</td>
</tr>
<tr>
<td>Number of patients with VAP</td>
<td>43</td>
<td>33</td>
<td>17</td>
<td>93</td>
</tr>
<tr>
<td>Ventilator utilisation ratio (%)</td>
<td>68.69 ± 9.1</td>
<td>71.88 ± 5.4</td>
<td>73.14 ± 9.74</td>
<td>71.24 ± 8.1</td>
</tr>
<tr>
<td>Incidence rate of VAP/100 admitted to ICU</td>
<td>8.69</td>
<td>8.31</td>
<td>8.29</td>
<td>8.48</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>11 (26%)</td>
<td>12 (36%)</td>
<td>5 (29%)</td>
<td>28 (30%)</td>
</tr>
</tbody>
</table>

Table 2. Analysis of the density/incidence and mortality in VAP patients, utilisation of catheters and numbers of ventilation days. Data are presented as numerical values, percentages, median (IQR) and mean ± SD

VAP — ventilator-associated pneumonia; SD — standard deviation; ICU — intensive care unit

Figure 1. Analysis of ventilator-associated pneumonia (VAP) density in the individual months of observation
acquired in our ICU, come from the doctoral dissertation of the first author and focused on monitoring the changes in bacterial flora and hospital-acquired infections in the years 1995–1996. Respiratory tract infections were the most common clinical form of ICU-acquired infections, which were diagnosed in 38% and 31% of patients, whereas hospital ICU-acquired infections were diagnosed in 72% and 68% of the total number of the treated patients in 1995 and 1996, respectively [28]. The first registry of hospital infections in the authors’ unit on monitoring infections using medical devices demonstrated that the ventilator utilisation rate was 70% with a VAP incidence of 29.34/1000 ventilation days [29].

Because of the formation of a team responsible for infection surveillance and introduction of DA-HAIs in the ICU-HELICS system on the initiative of the National Institute of Public Health, we were able to determine that the level of VAP incidence in 2007 over the 12-month observation period was 16 (11.7−18.6) /1000 ventilation days and that ventilation was used in 83% of the patients [21]. Multiple monitoring of DA-HAIs, performed by the same team within the INICC project, indicates that infection surveillance and institution of preventive procedures can result in infection reduction. With respect to VAP, its incidence decreased by 38% compared to the first published results of surveillance according to the INICC [22]. Although infection surveillance over many years showed a decreasing tendency in VAP density, the study over the 2.5 year periods did not reveal further decreases in the ventilator-associated pneumonia incidence. The control of infections, at the basic level, is currently insufficient and requires in-depth analysis of risk factors, preventive management at the ICU level, the introduction of new preventive measures by nursing personnel (nurse-to-patient ratio), education, staff motivation, practical/physical availability of preventive measures and more thorough observations of the trend.

The rate of VAP was decreased by 7.97/1000 ventilator days compared to that in our centre in the years 2007–2010 [22] and decreased by 6.27/1000 ventilation days compared to developing countries [18], while it was still higher than the 1.1 (1.0–1.2) in the American NHSN report of 2012 [17]. The most common aetiological factors of VAP, without considering the division in early and late VAP, include Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae [17]. The aetiological factors of VAP in our study, in which multiresistant Gram-negative bacteria predominate, do not differ from the study findings in other Polish hospitals [8,30].

The study limitations include a short observation period, lack of monitoring of the risk factors, lack of assessment of the “ventilation bundle” use and result from our choice of confining the study to monitoring of ventilator-associated pneumonia at the basic level.

In conclusion, the incidence of VAP in the observational period was lower than that in our previous publications and in the INICC report even though it was tenfold higher than in the NHSN/CDC report. As the incidence of ventilator-associated pneumonia has remained at a similar high level over the 2.5-year observation period, the causes should be elucidated and repair management promptly instituted.

ACKNOWLEDGEMENTS

1. We thank Dr Ewa Lewczuk and her team from the Microbiological Laboratory of the University Hospital for providing us with microbiological results, Elżbieta Ośtrowka for her assistance in data collection, and Łukasz Strużycki for graphic design.
2. The authors declare no financial disclosure.
3. The authors declare no conflict of interest.
References:

Corresponding author:
Wiesława Duszyńska, MD, PhD
Chair and Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University ul. Barozka 213, 50−556 Wrocław, Poland
email: w.duszynska@onet.eu

Received: 28.10.2014
Accepted: 1.12.2014