Anaesthetic management for endovascular treatment of unruptured intracranial aneurysms

Zbigniew Karwacki¹, Małgorzata Witkowska¹, Seweryn Niewiadomski¹, Andrzej Wiatr¹, Paweł Bukowski¹, Jolanta Wierzchowska¹, Adam Zapaśnik²

¹Department of Neuroanaesthesiology, Medical University of Gdańsk, Poland
²Department of Neuroradiology, Medical University of Gdańsk, Poland

Abstract

Background. Endovascular techniques for treatment of intracranial aneurysms are increasingly commonly applied. In general, the procedures are short, require general anaesthesia and complete immobilisation of patients. The aim of the present study was to assess the usefulness of general anaesthesia with propofol and laryngeal mask airway for endovascular management of intracranial aneurysms based on analysis of haemodynamic stability.

Material and methods. The study encompassed 26 patients undergoing endovascular treatment of intracranial aneurysms. The mean arterial pressure (MAP), heart rate (HR), bispectral index (BIS), end-tidal CO₂ (EtCO₂) and haemoglobin saturation with oxygen (SpO₂) were determined at eight measurement points: T1 — before anaesthesia induction, T2 — after induction, T3 — after LMA insertion, T4 — during arteriography, T5 — during “coiling”, T6 — at completion of propofol infusion, T7 — before LMA removal, T8 — after LMA removal.

Results. MAP and HR were found significantly reduced between T2 and T1. To maintain BIS within the range of 40–60, the following propofol infusion rates (in mg kg b.w.⁻¹ h⁻¹) were required: T2 — 4.5 ± 0.3; T3 — 4.6 ± 0.7; T4 — 4.5 ± 0.8 and T5 — 4.4 ± 0.6. EtCO₂ and SpO₂ were not demonstrated to be changed. The mean duration of anaesthesia and of recovery was 64.3 ± 21.8 and 8.9 ± 4.8 min., respectively.

Conclusions. General anaesthesia with propofol and LMA ensures suitable conditions for endovascular treatment of intracranial aneurysms.

Key words: general anaesthesia, intracranial aneurysm; general anaesthesia, interventional neuroradiology; anaesthetics, propofol; artificial airway, laryngeal mask airway
Forty minutes before the procedure, the patients were premedicated with oral midazolam (0.3 mg kg b.w.−1). Anaesthesia was induced with propofol (1.5 mg kg b.w.−1) and fentanyl (2 µg kg b.w.−1). The lungs were ventilated with 100% oxygen via a face mask. An LMA was inserted after the administration of vecuronium at a dose of 0.1 mg kg b.w.-1. Anaesthesia was maintained by the continuous infusion of propofol at a rate enabling the maintenance of a BIS within the range of 40–60. During anaesthesia, the lungs were mechanically ventilated with a mixture of oxygen and air (1:1 ratio). The following parameters were continuously monitored: the bispectral index (BI), mean arterial pressure (MAP), heart rate (HR), ETCO2 and percutaneous SpO2.

The analysed parameters were determined at eight measurement points: T1 — before anaesthesia induction, T2 — after induction, T3 — after LMA insertion, T4 — during arteriography, T5 — during intravascular coil spring insertion, T6 — at the completion of propofol infusion, T7 — before LMA removal and T8 — after LMA removal.

During the procedure, Ringer’s solution was continuously infused at a rate of 5 mL kg b.w.−1 h−1, and hourly diuresis monitored. At the procedure onset, an i.v. bolus of heparin at 100 u kg b.w.−1 was administered, and a dose of 1000 units was repeated every hour.

Statistical analysis was performed using GraphPad InStat 3.10 for Windows (GraphPad Software Inc., USA). The data are presented as the mean ± SD. The data distribution was assessed using the Kolmogorov-Smirnov test. Depending on the distribution type found, the Tukey-Kramer or Dunn test was used. P < 0.05 was considered as statistically significant.

RESULTS

The results are presented in Table 1. Significant changes in the BIS were observed between T1 and T2 and between T6 and T7. Moreover, significant differences in the MAO and HR were noted between T1 and T2. No differences in the ETCO2, SpO2 and mean infusion rates of propofol were found (Table 1).

The mean durations of anaesthesia and recovery were 64.3 ± 21.8 and 8.9 ± 4.8 min, respectively.

DISCUSSION

There are only few literature reports comparing sedation and general anaesthesia in interventional neuroradiology [4, 7, 8]. The occurrence of vasospasm and/or elevated intracranial pressure increases the risk of complications accompanying anaesthetic management aimed at protecting against aneurysm rupture by reducing the systemic pressure [7]. General anaesthesia is believed to have various advantages compared with sedation [4]. By ensuring the stillness of patients, this anaesthesia minimises the risk of accidental vessel puncture. Furthermore, the method secures higher haemodynamic stability and eliminates the hazard of impaired airway patency. Thanks to general anaesthesia, patients undergoing surgery are provided with comfort when complications develop or the procedure is prolonged [4–6]. The most important disadvantages of general anaesthesia include a lack of possible neurological assessment during the procedure and circulatory sequelae of laryngoscopy, intubation and extubation, leading to increases in intracranial pressure [7].

![Figure 1. Location of aneurysms in the study population (ICA — internal carotid artery, MCA — middle cerebral artery, BA — basilar artery, ACoA — anterior communicating artery, PICA — posterior inferior cerebellar artery)](image)

Table 1. Monitored parameters (mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mm Hg)</td>
<td>107.1 ± 19.5</td>
<td>84.2 ± 14.9*</td>
<td>85.5 ± 17.2</td>
<td>82.8 ± 16.9</td>
<td>82.8 ± 14.6</td>
<td>89.3 ± 18.7</td>
<td>102.9 ± 22.4</td>
<td>108.2 ± 26.4</td>
</tr>
<tr>
<td>HR (min⁻¹)</td>
<td>85.8 ± 16.5</td>
<td>73.1 ± 15.0*</td>
<td>71.1 ± 15.6</td>
<td>67.4 ± 14.0</td>
<td>66.3 ± 13.7</td>
<td>70.9 ± 13.6</td>
<td>79.3 ± 13.4</td>
<td>80.6 ± 13.6</td>
</tr>
<tr>
<td>SpO₂ (%)</td>
<td>97.2 ± 1.1</td>
<td>98.9 ± 0.7</td>
<td>98.7 ± 0.8</td>
<td>98.8 ± 0.9</td>
<td>99.0 ± 0.3</td>
<td>99.0 ± 0.7</td>
<td>99.0 ± 0.5</td>
<td>99.0 ± 0.7</td>
</tr>
<tr>
<td>ETCO₂ (mm Hg)</td>
<td>–</td>
<td>–</td>
<td>36.7 ± 1.5</td>
<td>36.6 ± 1.9</td>
<td>36.0 ± 1.7</td>
<td>37.1 ± 2.1</td>
<td>36.9 ± 1.7</td>
<td>–</td>
</tr>
<tr>
<td>BIS</td>
<td>95.7 ± 4.1</td>
<td>37.5 ± 6.6*</td>
<td>48.2 ± 13.6*</td>
<td>5.6 ± 9.5</td>
<td>46.0 ± 8.2</td>
<td>54.6 ± 14.6</td>
<td>79.1 ± 9.0*</td>
<td>93.0 ± 6.4</td>
</tr>
<tr>
<td>Propofol infusion rate (mg kg b.w.⁻¹ h⁻¹)</td>
<td>–</td>
<td>4.5 ± 0.3</td>
<td>4.6 ± 0.7</td>
<td>4.5 ± 0.8</td>
<td>4.4 ± 0.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*significant difference (P < 0.05) compared to the preceding value
The use of an LMA avoids the autonomic nervous system excitation induced by direct laryngoscopy, intubation and extubation [4, 8]. Our observations confirm that LMA use is the optimal method for securing the patency of the upper airways during anaesthesia for endovascular ICA repair. According to certain authors, the Cobra supralaryngeal device can be an alternative to an LMA [9, 10].

The key aim of anaesthetic management during intubation and anaesthesia maintenance in patients with ICAs is to maintain the transmural pressure gradient of the aneurysm sac at a constant level [5, 7, 8]. The risk of aneurysm rupture during endovascular treatment is estimated to be 2.5% [11], and 1% of cases are fatal. General anaesthesia with propofol or sevoflurane ensures rapid intubation without haemodynamic disturbances; fully controlled anaesthesia depth; and gentle, short-lasting recovery [4, 5]. The superiority of propofol over sevoflurane results from the fact that at concentrations exceeding 2 MAC, the latter anaesthetic increases the cerebral blood flow and CO₂ reactivity of cerebral vessels [7]. Moreover, the neuroprotective properties of propofol are of importance [13]. Our observations indicate that the combination of an intravenous hypnotic, an opioid and a non-depolarising relaxant prevents the increases in arterial pressure caused by LMA insertion.

During angiography and the placement of coil springs in the aneurysm sac, the extent of stimulation is markedly lower than during the induction of anaesthesia. The continuous infusion of propofol used in our study was found to be sufficient to maintain a suitable level of anaesthesia. Moreover, a relatively short recovery time after the use of propofol infusion enables an immediate evaluation of the patient’s neurological status. In neurologically compromised patients, combining an inotropic infusion of propofol, remifentanil or sufentanil at a low dose and a non-depolarising relaxant prevents the increases in arterial pressure caused by LMA insertion.

The clinical symptoms of aneurysm rupture in anaesthetised patients result from a sudden increase in intracranial pressure [7]. Hypertension accompanied by bradycardia can be interpreted as a consequence of an insufficient depth of anaesthesia. In contrast, reflex hypotension can cause hypoperfusion, leading to ischaemic injuries. Therefore, standard monitoring during endovascular procedures involves ECG, SpO₂, ECO₂ and arterial pressure measurements, and particularly mean pressure value measurements [4, 6].

The current guidelines advocate the use of artificial lung ventilation, enabling the maintenance of normocapnia and proper oxygenation. This procedure limits the incidence of cerebral blood flow abnormalities and intravascular catheter-related increases in intracranial pressure [7]. Hypoventilation-induced cerebral vasodilation can impair the quality of cerebral vessel pictures on the monitor [8].

Thanks to dynamic advances in digital technologies and a better understanding of CNS electrophysiology, BIS monitoring could be introduced. The BIS is an integrated numerical value ranging from 0–100 that reflects the correlation between electroencephalographic and awareness changes [14]. A BIS maintained within the range of 40–60 ensures a deep depression of awareness, carrying the risk of awareness’ return in anaesthetised patients [15]. Our observations fully confirm the usefulness of BIS monitoring during the endovascular repair of ICAs, especially given that a significant correlation was demonstrated between the BIS value and hypotonic concentration [15, 16]. It is believed that the BIS allows the control of awareness [16]. Luginbühl and co-workers [17] observed that BIS monitoring during anaesthesia with propofol reduced the anaesthetic dose and shortened the period of recovery. Rapid, gentle recovery from anaesthesia enables an early assessment of the patient’s neurological status and safe transport of the patient from the neuroradiological laboratory to the intensive care unit.

A certain limitation of our analysis should be taken into account, i.e., the analysis of anaesthetic management during the endovascular treatment of unruptured aneurysms in patients in good general condition. It would be interesting to perform similar studies in patients with clinical manifestations accompanying subarachnoid haemorrhage.

CONCLUSION

General anaesthesia with propofol and an LMA provides good conditions for the endovascular treatment of ICAs.

References:

Corresponding author:
Prof. Zbigniew Karwacki, MD, PhD
Zakład Neuroanestezjologii Katedry Anestezjologii i Intensywnej Terapii GUMed
ul. Smoluchowskiego 17, 80–214 Gdańsk, Poland
e-mail: zkarw@gumed.edu.pl

Received: 31.03.2013
Accepted: 28.06.2013