Traumatic air in spinal canal (pneumorrhachis)

*Dawoud El-Halabi1, Taek Alkandari2, Mohamed Mammdoh Yaktien3

1Surgical Department, Adan Hospital
2Kuwaiti Board Surgical Regs, Adan Hospital
3RNMLC YIACO Medical Co., Adan Hospital

Abstract

Background. Pneumorrhachis (PR) means the presence of air in the spinal canal; it is an exceptional, but important radiographic finding, which may be associated with different aetiologies and pathways of air entry into the spinal canal.

Case report. An 18-year-old male was admitted to hospital after a road traffic accident. He was conscious, with several abrasions and subcutaneous haematoma and emphysema on the left side, but no pneumothorax. Ultrasound of the abdomen showed a grade 2 splenic rupture with minimal bleeding. CT revealed no fractures but the presence of air in the spinal canal. The patient was placed on conservative treatment and discharged home without any complications or sequelae.

Discussion and conclusion. PR can be epidural or subdural, iatrogenic or traumatic. It is usually asymptomatic, but can be also associated with marked morbidity, especially when it is subdural in the cervical region. It can be regarded as a predictor of the severity of head injury. Pneumorrhachis does not usually require surgical intervention.

Key words: complications, pneumorrhachis; trauma,
of penetration, volume of intraspinal air, capacity of the intraspinal space, and patient’s positioning. In external pneumorrhachis, the epidural air usually collects in the posterior epidural space, which is less resistant due to lesser amounts of the connective tissue, as compared with the rich vascular network present anteriorly [3].

PR is primarily diagnosed radiographically. X-ray may be helpful as an initial examination and to detect larger amounts of intraspinal air [2]. A linear lucency along the spinal canal on a lateral chest radiograph is considered a useful detection sign [3]. The diagnostic tool of choice is CT [4], yet in such a case, the differentiation between the intra- and extradural pneumorrhachis can be difficult.

Moreover, it is extremely important to differentiate intraspinal air from free intraspinal gas, collected in the course of degenerative, malignant, inflammatory and infectious diseases, produced by gas-forming organisms [4], which is likely to be infeasible on CT.

The presence of air in the intradural space is usually associated with a severe head injury [5]. Extradural air, on the other hand, is mostly connected with a penetrating injury; the patient’s clinical condition is usually better and pneumocephalous is not observed. In most cases, it is located posteriorly in the spinal canal.

Pneumorrhachis is usually asymptomatic, reabsorbs spontaneously and is mostly managed conservatively. When symptomatic, the treatment should involve the associated injuries [6]. Occasionally, pneumorrhachis may result from spinal anaesthesia procedures [7].

In traumatic patients, the presence of gas within the spinal canal is an indication for determining the aetiology and possible pathway of air entry into the space. However, in the case described it was not effective. Due to the satisfactory general condition of our patient, he was successfully treated conservatively.

Posttraumatic pneumorrhachis is thought to be connected with increased morbidity and mortality rates. When associated with decreased intraspinal pressure, secondary to possible cerebrospinal fluid leakage, it is usually of a more benign character. However, when intraspinal air enters the craniospinal compartment with a one-way air valve mechanism, the gas is entrapped and might cause tension pneumorrhachis and pneumocephalus, which results in nervous tissue compression and requires intervention. Generally, prophylactic management with antibiotics is not recommended in cases of extradural pneumorrhachis and in patients with intradural pneumorrhachis without signs and symptoms of meningitis.

In the cases when general anaesthesia is required, the use of inhalational nitrous oxide is avoided because it induces the expansion of intracavitary gas volume and results in increased intracranial pressure, due to its diffusion into the air-filled space. Anaesthetic techniques such as IPPV with transient high concentration oxygen, are the methods of choice, preventing an increase in the volume of any intraspinal and intracranial air and simultaneously promoting faster reabsorption of air.

Pneumorrhachis, especially the intradural one, is a rare entity and can be caused by a multitude of sources. It is usually self-limiting, yet the associated pathologies leading should be promptly diagnosed and adequately managed.

REFERENCES