open access

Vol 89, No 4 (2021)
Review paper
Published online: 2021-09-02
Submitted: 2021-03-16
Accepted: 2021-05-31
Get Citation

Impact of inhalers used in the treatment of respiratory diseases on global warming

Andrzej Władysław Emeryk1, Tomasz Sosnowski2, Maciej Kupczyk3, Paweł Śliwiński4, Justyna Zajdel-Całkowska56, Tadeusz M Zielonka7, Agnieszka Mastalerz-Migas8
DOI: 10.5603/ARM.a2021.0092
·
Pubmed: 34494246
·
Adv Respir Med 2021;89(4):427-438.
Affiliations
  1. Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland
  2. Chair of Integrated Process Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
  3. Department of Internal Medicine, Asthma and Allergy, Norbert Barlicki Memorial Teaching Hospital No. 1 of the Medical University of Lodz, Lodz, Poland
  4. 2nd Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
  5. Faculty of Law and Administration, Lazarski University in Warsaw, Warsaw, Poland
  6. Chair of Humanities, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
  7. Chair and Department of Family Medicine, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
  8. Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland

open access

Vol 89, No 4 (2021)
REVIEWS
Published online: 2021-09-02
Submitted: 2021-03-16
Accepted: 2021-05-31

Abstract

The term “carbon footprint” describes the emission of greenhouse gases into the environment as a result of human activities. The healthcare sector is responsible for 5–8% of the value of global greenhouse gas emissions, of which medical aerosols account for only 0.03% of the total emissions. The reduction of greenhouse gases, including those used for the production and use of medicinal products and medical devices, is part of the responsibilities that Poland and the respective countries should undertake in order to implement the assumptions of international law. At the level of medical law, this obligation correlates with the need to exercise due diligence in the process of providing health services, including the selection of low-emission medical products and devices (inhalers) and providing patients with information on how to handle used products and devices, with particular emphasis on those that imply greenhouse gas emissions. Pressurized metered dose inhalers (pMDI) containing the hydrofluoroalkane 134a demonstrate the largest carbon footprint, followed by a metered dose liquid inhaler and dry powder inhalers (DPI). The carbon footprint of DPI with a given drug is 13–32 times lower than it is in the case of the corresponding pMDI. Replacement of pMDI by DPI is one of the effective methods to reduce the carbon footprint of inhalers, and the replacement should be based on current medical knowledge. A recycling system for all types of inhalers must be urgently implemented.

Abstract

The term “carbon footprint” describes the emission of greenhouse gases into the environment as a result of human activities. The healthcare sector is responsible for 5–8% of the value of global greenhouse gas emissions, of which medical aerosols account for only 0.03% of the total emissions. The reduction of greenhouse gases, including those used for the production and use of medicinal products and medical devices, is part of the responsibilities that Poland and the respective countries should undertake in order to implement the assumptions of international law. At the level of medical law, this obligation correlates with the need to exercise due diligence in the process of providing health services, including the selection of low-emission medical products and devices (inhalers) and providing patients with information on how to handle used products and devices, with particular emphasis on those that imply greenhouse gas emissions. Pressurized metered dose inhalers (pMDI) containing the hydrofluoroalkane 134a demonstrate the largest carbon footprint, followed by a metered dose liquid inhaler and dry powder inhalers (DPI). The carbon footprint of DPI with a given drug is 13–32 times lower than it is in the case of the corresponding pMDI. Replacement of pMDI by DPI is one of the effective methods to reduce the carbon footprint of inhalers, and the replacement should be based on current medical knowledge. A recycling system for all types of inhalers must be urgently implemented.

Get Citation

Keywords

carbon footprint, global warming potential, pressurized metered dose inhaler, hydrofluoroalkane, dry powder inhaler, inhalation therapy

About this article
Title

Impact of inhalers used in the treatment of respiratory diseases on global warming

Journal

Advances in Respiratory Medicine

Issue

Vol 89, No 4 (2021)

Article type

Review paper

Pages

427-438

Published online

2021-09-02

DOI

10.5603/ARM.a2021.0092

Pubmed

34494246

Bibliographic record

Adv Respir Med 2021;89(4):427-438.

Keywords

carbon footprint
global warming potential
pressurized metered dose inhaler
hydrofluoroalkane
dry powder inhaler
inhalation therapy

Authors

Andrzej Władysław Emeryk
Tomasz Sosnowski
Maciej Kupczyk
Paweł Śliwiński
Justyna Zajdel-Całkowska
Tadeusz M Zielonka
Agnieszka Mastalerz-Migas

References (65)
  1. Peters GP. Carbon footprints and embodied carbon at multiple scales. Curr Opin Environ Sustain. 2010; 2(4): 245–250.
  2. Houghton JT, Ding Y, Griggs DJ, Nouger M, van der Linden PJ, Dai X, Maskell K, Johnson CA. Climate change 2001: the scientific basis. Contribution of working group i to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York 2001.
  3. EPA, 2020. https://www.epa.gov/ghgemissions/overview-greenhouse-gases#f-gases (26.10.2020).
  4. Baron Ch. Is now the time to shake up the pMDI environment? Pulm Nasal Drug Deliv. 2020; 106: 10–13.
  5. Our World in Data. http://ourlwordindata.org/co2-and-other-greenhouse-gas-emissions (20.08.2020).
  6. Climate & Clean Air Coalition. Hydrofluorocarbons (HFC). https://www.ccacoalition.org/fr/slcps/hydrofluorocarbons-hfc (19.09.2020).
  7. United Nations Environment Program, Montreal Protocol Secretariat, Ratification of the Kigali Amendment, information note (February 2017). http://conf.montreal-protocol.org/meeting/oewg/oewg-39/presession/briefingnotesfr/ratification_kigali_E.pdf (12.12.2020).
  8. Bouley T, Boykoff M, Byass P et al. Climate-smart healthcare: low-carbon and resilience strategies for the health sector. Washington, DC: World Bank Group. 2017. http://documents.world bank.org/curated/en/322251495434571418/Climate-smart-healthcare-low-carbon-and-resilience-strategies-for-the-health-sector (22.09.2020).
  9. Pichler PP, Jaccard IS, Weisz U, et al. International comparison of health care carbon footprints. Environl Res Lett. 2019; 14(6): 064004.
  10. Fletcher MJ, Upton J, Taylor-Fishwick J, et al. COPD uncovered: an international survey on the impact of chronic obstructive pulmonary disease [COPD] on a working age population. BMC Public Health. 2011; 11: 612.
  11. Accessed United Nations Environment Programme. Report of the Medical Technical Options Committee (MTOC) 2018 Assessment Report. 2018. http://ozone.unep.org/Assessment_Panels/TEAP/Reports/MTOC/MTOC-AssessmentReport-2014.pdf (23.10.2020).
  12. NICE encourages use of greener asthma inhalers. 08 April 2019. https://www.nice.org.uk/news/article/nice-encourages-use-of-greener-asthma-inhalers (13.12.2020).
  13. Hodder R, Price D. Patient preferences for inhaler devices in chronic obstructive pulmonary disease: experience with Respimat Soft Mist inhaler. Int J Chron Obstruct Pulmon Dis. 2009; 4: 381–390.
  14. GINA Report 2020. Global Strategy for Asthma Management and Prevention. 2020 GINA MAIN REPORT. https://ginasthma.org/gina-reports/ (10.10.2020).
  15. GOLD 2020 report — Global Initiative for Chronic Obstructive Lung Disease. https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf (10.10.2020).
  16. Emeryk A, Pirożyński M, Mazurek H. Polski Przewodnik Inhalacyjny. Via-Medica, Gdańsk 2021.
  17. Lavorini F, Corrigan CJ, Barnes PJ, et al. Aerosol Drug Management Improvement Team. Retail sales of inhalation devices in European countries: so much for a global policy. Respir Med. 2011; 105(7): 1099–1103.
  18. Laube BL, Janssens HM, de Jongh FHC, et al. European Respiratory Society, International Society for Aerosols in Medicine. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J. 2011; 37(6): 1308–1331.
  19. Emeryk A, Pirożyński M, Emeryk-Maksymiuk J. Dry powder inhalers — between the doctor and the patient. Adv Respir Med. 2018; 86(1): 44–52.
  20. Ramowa Konwencja Narodów Zjednoczonych w sprawie zmian klimatu, z dnia 9 maja 1992 r., Dz.U. 1997 r., nr 45, poz. 286.
  21. Protokół z Kioto do Ramowej Konwencji Narodów Zjednoczonych w sprawie zmian klimatu z dnia 11.12.1997 r., Dz.U. 2005 r., nr 203, poz. 1684.
  22. Matsuo T. Climate change research project, discussion papers, for the design of effective framework of Kyoto mechanisms. Kanagawa, 1999.
  23. Porozumienie paryskie do Ramowej konwencji Narodów Zjednoczonych w sprawie zmian klimatu z dnia 12 grudnia 2015 r., Dz.U. 2017 r., poz. 36.
  24. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1005/2009 z dnia 16 września 2009 r. w sprawie w sprawie substancji zubożających warstwę ozonową (Tekst mający znaczenie dla EOG).
  25. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 517/2014 z dnia 16 kwietnia 2014 r., w sprawie fluorowanych gazów cieplarnianych i uchylenia rozporządzenia (WE) nr 842/2006 (Tekst mający znaczenie dla EOG).
  26. Ustawa z dnia 15 maja 2015 roku o substancjach zubożających warstwę ozonową oraz o niektórych fluorowanych gazach cieplarnianych, Dz.U. 2015 r., poz. 881.
  27. Protokół montrealski w sprawie substancji zubożających warstwę ozonową — międzynarodowe porozumienie dotyczące przeciwdziałania dziurze ozonowej z dnia 16 września 1987, Dz.U. 1992 r., nr 98, poz. 490.
  28. Poprawka z Kigali z dnia 15 października 2016 r., nr 2017/1541, Decyzja Rady UE sprawie zawarcia, w imieniu Unii Europejskiej, poprawki z Kigali do Protokołu montrealskiego w sprawie substancji zubożających warstwę ozonową.
  29. Konstytucja RP z dnia 2 kwietnia 1997 r., Dz.U. 1997 r., nr 78, poz. 483.
  30. Ustawa z dnia 9 listopada 2018 roku o ratyfikacji Poprawek do Protokołu montrealskiego w sprawie substancji zubożających warstwę ozonową, sporządzonego w Montrealu dnia 16 września 1987 r., przyjętych w Kigali dnia 15 października 2016 r., Dz.U. 2018 r., poz. 2254.
  31. Sekretariat Konwencji – art. 1 pkt 3 Protokołu Montrealskiego. https://ozone.unep.org/ozone-secretariat-launches-new-website (27.12.2020).
  32. Ustawa o zawodach lekarza i lekarza dentysty z dnia 05 grudnia 1996 r., tj. Dz.U. 2020 r., poz. 514, ze zm.
  33. British Thoracic Society, Position Statement the environment and lung health 2020. www.brit-thoracic.org.uk%2Fdocument-library%2Fgovernance-and-policy-documents%2Fposition-statements%2Fenvironment-and-lung-health-position-statement-2020%2F&usg=AOvVaw0V6ybLM-eOx2ZvUv4VYtf9 (27.12.2020).
  34. Ustawa o utrzymaniu czystości i porządku w gminach z dnia 13 września 1996 r., Dz.U. 2020 r., poz. 1439.
  35. Jeswani H, Azapagic A. Life cycle environmental impacts of inhalers. Journal of Cleaner Production. 2019; 237: 117733.
  36. Goulet B, Olson L, Mayer B. A comparative life cycle assessment between a metered dose inhaler and electric nebulizer. Sustainability. 2017; 9(10): 1725.
  37. Kleinekorte J, Fleitmann L, Bachmann M, et al. Life cycle assessment for the design of chemical processes, products, and supply chains. Annu Rev Chem Biomol Eng. 2020; 11: 203–233.
  38. Hänsel M, Bambach T, Wachtel H. Reduced environmental impact of the reusable Respimat Soft Mist™ inhaler compared with pressurised metered-dose inhalers. Adv Ther. 2019; 36(9): 2487–2492.
  39. Ortsäter G, Borgström F, Soulard S, et al. A budget impact model to estimate the environmental impact of adopting RESPIMAT re-usable in the Nordics and Benelux. Adv Ther. 2019; 36(12): 3435–3445.
  40. Wilkinson AJK, Braggins R, Steinbach I, et al. Costs of switching to low global warming potential inhalers. An economic and carbon footprint analysis of NHS prescription data in England. BMJ Open. 2019; 9(10): e028763.
  41. Mueller-Walz R, Fueg LM. Medicinal aerosol formulations, 2014. https://www.google.com/patents/US20140314684 (15.03.2021).
  42. Atherton M. Environmental impact of inhalers, 2017. https://www. Great -ermanchester-ca.gov.uk/download/meetings/id/2423/environmental_ impact_ of_ inhalers (27.09.2020).
  43. Some Specific Inhalers – Ventolin™, Flutiform™, Symbicort™ MDI. https://greeninhaler.org/some-specific-inhalers-ventolin-flutiform-symbicort-mdi/ (25.10.2020).
  44. Janson C, Henderson R, Löfdahl M, et al. Carbon footprint impact of the choice of inhalers for asthma and COPD. Thorax. 2020; 75(1): 82–84.
  45. Panigone S, Sandri F, Ferri R, et al. Environmental impact of inhalers for respiratory diseases: decreasing the carbon footprint while preserving patient-tailored treatment. BMJ Open Respir Res. 2020; 7(1): e000571.
  46. Case study*: Breezhaler® Carbon Footprint. https://www.novartis.com/our-company/corporate-responsibility/environmental-sustainability/climate/case-study-breezhaler-carbon-footprint (12.12.2020).
  47. https://www.google.pl/search?sxsrf=ALeKk03kxPk3x1748Ld79QI__e7wATmvEQ:1594103429530&source=univ&tbm=isch&q=breezhaler+sensor&sa=X&ved=2ahUKEwigzJuFwrrqAhVJlosKHbNrDQMQsAR6BAgIEAE&biw=1536&bih=754#imgrc=8MZSL3GA-AsqYM (10.10.2020).
  48. Product Carbon Footprint: Life Cycle Assessment Report for Orion Corporation, Orion Pharma. A study of 4 varieties of Easyhalers. Carbon Footprint Ltd 2020.
  49. Carbon Footprint Assessment of Orion’s Dry Powder Inhalers. https://www.orion.fi/en/Sustainability/stories-about-responsibility/inhaler-environmental-footprint/ (25.10.2020).
  50. Keeley D, Scullion JE, Usmani OS. Minimising the environmental impact of inhaled therapies: problems with policy on low carbon inhalers. Eur Respir J. 2020; 55(2): 2000048.
  51. Usmani O, Scullion J, Keeley D. Our planet or our patients — is the sky the limit for inhaler choice? The Lancet Respiratory Medicine. 2019; 7(1): 11–13.
  52. Hillman T, Mortimer F, Hopkinson NS. Inhaled drugs and global warming: time to shift to dry powder inhalers. BMJ. 2013; 346: f3359.
  53. Wynes S, Nicholas K. The climate mitigation gap: education and government recommendations miss the most effective individual actions. Environmental Research Letters. 2017; 12(7): 074024.
  54. Lavorini F, Braido F, Baiardini I, et al. SIAAC-SIMER. Asthma and COPD: Interchangeable use of inhalers. A document of Italian Society of Allergy, Asthma and Clinical Immmunology (SIAAIC) & Italian Society of Respiratory Medicine (SIMeR). Pulm Pharmacol Ther. 2015; 34: 25–30.
  55. Mahler DA. The role of inspiratory flow in selection and use of inhaled therapy for patients with chronic obstructive pulmonary disease. Respir Med. 2020; 161: 105857.
  56. Pedersen S, Dubus JC, Crompton GK, et al. ADMIT Working Group. The ADMIT series — issues in inhalation therapy. 5) Inhaler selection in children with asthma. Prim Care Respir J. 2010; 19(3): 209–216.
  57. Roggeri A, Micheletto C, Roggeri DP. Inhalation errors due to device switch in patients with chronic obstructive pulmonary disease and asthma: critical health and economic issues. Int J Chron Obstruct Pulmon Dis. 2016; 11: 597–602.
  58. Thomas M, Price D, Chrystyn H, et al. Inhaled corticosteroids for asthma: impact of practice level device switching on asthma control. BMC Pulm Med. 2009; 9: 1.
  59. Bloom CI, Douglas I, Olney J, et al. Cost saving of switching to equivalent inhalers and its effect on health outcomes. Thorax. 2019; 74(11): 1078–1086.
  60. Rhee CK, van Boven JFM, Yau Ming SW, et al. Does changing inhaler device impact real-life asthma outcomes? Clinical and economic evaluation. J Allergy Clin Immunol Pract. 2019; 7(3): 934–942.
  61. Bjermer L. The importance of continuity in inhaler device choice for asthma and chronic obstructive pulmonary disease. Respiration. 2014; 88(4): 346–352.
  62. Levy ML, Dekhuijzen P, Barnes PJ, et al. Inhaler technique: facts and fantasies. A view from the Aerosol Drug Management Improvement Team (ADMIT). NPJ Prim Care Respir Med. 2016; 26: 16017.
  63. Price D, Bosnic-Anticevich S, Briggs A, et al. Inhaler Error Steering Committee. Inhaler competence in asthma: common errors, barriers to use and recommended solutions. Respir Med. 2013; 107(1): 37–46.
  64. Usmani OS. Choosing the right inhaler for your asthma or COPD patient. Ther Clin Risk Manag. 2019; 15: 461–472.
  65. Pritchard JN. The climate is changing for metered-dose inhalers and action is needed. Drug Des Devel Ther. 2020; 14: 3043–3055.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl